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Although the last two decades have seen an increasing number of activity recognition applications with wearable devices, there
is still a lack of tools specifically designed to support their development. The development of activity recognition algorithms
for wearable devices is particularly challenging because of the several requirements that have to be met simultaneously
(e.g., low energy consumption, small and lightweight, accurate recognition). Activity recognition applications are usually
developed in a series of iterations to annotate sensor data and to analyze, develop and assess the performance of a recognition
algorithm. This paper presents the Wearables Development Toolkit, an Integrated Development Environment designed to
lower the entrance barrier to the development of activity recognition applications with wearables. It specifically focuses
on activity recognition using on-body inertial sensors. The toolkit offers a repository of high-level reusable components
and a set of tools with functionality to annotate data, to analyze and develop activity recognition algorithms and to assess
their recognition and computational performance. We demonstrate the versatility of the toolkit with three applications and
describe how we developed it incrementally based on two user studies.
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1 INTRODUCTION

Over the last two decades, a number of activity recognition applications based on wearable sensors have been
introduced, mostly by the research community. Applications areas include sports (e.g., table tennis [6], soccer
[61], cricket [32]), health (e.g., gait analysis of patients of Parkinson’s Disease [46], rehabilitation after knee
injuries [25]), daily activity monitoring (e.g., drinking [52], eating [1], fall detection [8]) and animal welfare (e.g.,
lameness detection in dairy cattle [24], horse jump and gait classification [13]). These applications can help assess,
keep track of and improve the physical condition of the wearer unobtrusively, often with minimum setup and
independently of the wearer’s location.

While the existing applications have already highlighted the potential benefits of activity recognition to
different end user groups, developing activity recognition systems that are ultimately accepted by end users
remains a challenging task, for several reasons. First, in contrast to other recognition applications (e.g., computer
vision, speech recognition), activity recognition applications with wearable devices are bound to additional
requirements besides a highly accurate recognition. Common requirements include: low energy consumption
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(i-e., long-lasting battery), small and lightweight device and user comfort (e.g., form-factor, does not heat up) [15].
Second, the design space of a wearable device application is large. Design decisions have to be made regarding
the device itself (CPU, memory, sensors, communication and storage modules), the computations that will be
run on the device (sensor configurations, signal processing and machine learning methods) and the architecture
of the wearable system (e.g., hardware-software mapping involving the wearable, mobile devices, the cloud
and the communication between devices). As a consequence, it is often not possible to find a design that meets
every requirement, in which case a suitable trade-off between design alternatives has to be made. For example, a
particular recognition algorithm might deliver a higher accuracy, but might drain the battery faster than another,
less accurate recognition algorithm. Hosting a larger battery could make the device remain functional for a longer
period of time, but will usually also increase its size and weight, which might affect user comfort. Furthermore,
the entrance barrier to wearable device development remains high, as knowledge in multiple disciplines (e.g.,
computer science, data science, electrical engineering, human-computer interaction) is often necessary to design
wearable systems that meet the user needs.

Due to the aforementioned challenges, developers can rarely make every decision regarding the design of a
wearable system upfront. Instead, they usually engage in a series of iterations to assess different design alternatives
before they can decide for a suitable one. In particular, they collect and annotate data, they study the collected
data and devise, implement and assess different recognition methods. Based on the results of the assessment,
they decide whether further iterations are needed. Further iterations might include the collection of new data, or
the development, assessment and optimization of recognition methods.

While there exist Integrated Development Environments (IDEs) specifically designed to support the develop-
ment of other physical devices (e.g., mobile devices), there is up to date no IDE for activity recognition applications
with wearable devices. As a consequence, most developers of wearable systems still use general-purpose data
analysis tools and programing languages such as Matlab, Python, WEKA and C++. However, as these tools were
not designed for activity recognition applications with wearables, they do not directly support the aforementioned
tasks and have a high entrance barrier.

In this paper, we present the Wearables Development Toolkit (WDK), a development environment for activity
recognition applications with wearable devices. To lower the entrance barrier to the development of activity
recognition applications, the WDK offers a set of reusable software components that hide the complexity of
algorithms commonly used across activity recognition applications such as signal processing procedures and
machine learning classifiers. For developers with less programming experience, the same components are made
available within a visual flow-based programming environment. The WDK also facilitates the iterative and
incremental design of wearable device systems. In particular, it enables developers to assess the suitability of
a particular wearable system (recognition algorithm, hardware and architecture) to the requirements of an
application. To this end, it offers four tools to support common development tasks including the annotation
of sensor data, the analysis of the data produced by different algorithms, the development of a recognition
algorithm and the assessment of the computational performance (CPU usage, memory consumption, amount of
data transferred) of a particular wearable system design.

The rest of the paper is structured as follows. Section 2 provides an overview of other toolkits and development
environments and discusses how the WDK relates to them. In Section 3, we present the WDK and describe its
features, including the goals we based its design on, its architecture and the functionality it offers. Section 4
presents a step-by-step walkthrough describing how the WDK is used to create an activity recognition application.
We also demonstrate the versatility of the WDK to re-create two further activity recognition applications in
Section 5. In Section 6, we present the results of two user studies we conducted to assess and improve the usability
of the WDK.
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2 RELATED WORK

Several toolkits have been created that support the development of interactive, ubiquitous and wearable devices
and their applications. This section first provides an overview of the toolkits developed so far and then discusses
different development methods existing toolkits have relied on to lower the entrance barrier and reduce the time
needed to develop applications.

2.1 Toolkits
The toolkits developed so far can be grouped by the kind of applications they support. These include:

o Toolkits that facilitate the 3D-scanning, computer-aided design and 3D printing of objects as well as the
integration of electronics into them. These toolkits often offer high-level programming semantics to develop
applications that interact with the created objects. Toolkits that fall into this category include: Pineal [34],
Retrofab [48], Makers Marks [51], Sauron [50], Modkit [40].

o Toolkits that support the development of applications that sense information from a physical environment
(e.g., room temperature) and/or users in the environment (e.g., their posture) and enable joint interactions
between them. Some of the toolkits under this category are: EagleSense [58], Physikit [29], Sod-toolkit [54].

o Toolkits that enable the creation of applications distributed across multiple wearable, mobile or ubiquitous
devices. These toolkits offer programming semantics that span across multiple devices; hence, they save
users from having to program each device as well as the communication protocols between them. Toolkits
under this category include: Interactex [20], Panelrama [59], XDStudio [42], Weave [9], WatchConnect
[30], iStuff Mobile [3], ToyVision [39] and C4 [33].

o Toolkits that lower the entrance barrier to the development of applications that rely on specific hardware
technologies such as: smart textiles, [20], printed circuit boards [56], electrical muscle stimulation devices
[47], capacitive sensors [19] and paper-based electronics [49]. These toolkits offer a set of reusable hardware
and software components with high-level programming semantics that hide low-level implementation
details about the particular technology.

Most of these toolkits were not developed for activity recognition applications with wearables; hence, they
target different kinds of applications than the WDK. A more related class of toolkits corresponds to those designed
to lower the entrance barrier to the development of applications that react to user gestures. Toolkits under this
category include: Exemplar [27], MAGIC [2], GART [38] and (GT?k) [57]. These toolkits are similar to our work
in that they facilitate the creation of applications that detect specific patterns in sensor data. However, they focus
on gesture recognition and offer predefined recognition methods for this purpose: Exemplar [27] uses Dynamic
Time Warping (DTW), the MAGIC toolkit [2] relies on DTW together with a set of predefined features extracted
from the input data, the (GT?k) [57] uses a Hidden Markov Model (HMM) configured with a grammar specified
by the user and the GART toolkit [38] relies only on a HMM. The WDK makes a broader set of recognition
methods available to enable developers to experiment and ultimately design a recognition algorithm that fulfills
the requirements of the particular application.

The CRN Toolbox [4] and the more recent Gesture Recognition Toolkit (GRT) developed by Nick Gillian [16] are
perhaps the existing toolkits which share most similarity with the WDK. Both toolkits enable the development of
recognition algorithms with a set of reusable software components. While these toolkits ease the implementation
(i.e., programming) and assessment of an activity recognition algorithm, they do not support the rest of the
development lifecycle of a recognition algorithm. For example, these tools don’t facilitate the annotation of data,
its analysis and don’t provide a detailed assessment of the performance of an algorithm besides an aggregated
metric (e.g., F1-Score). This is an issue because developers rarely know upfront what algorithm to implement
without annotating and studying the data, developing, assessing and optimizing different recognition algorithms.
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The WDK consists of different tools integrated within a development environment to support these tasks and
facilitate the iterative development of activity recognition algorithms for wearables.

2.2 Programming Semantics

The existing toolkits lower the entrance barrier to users with high-level programming semantics. We have
identified four main programming paradigms used by most toolkits. In programming by demonstration, the toolkit
learns from demonstrations performed by users. Since this technique saves users from having to write code, it
has been used in several toolkits from the human-computer interaction community such as: a CAPpella [11],
Exemplar [27], Topiary [37], d.tools [28] and PaperPulse [49]. The ease to program an application using this
technique often comes at the cost of a lack of flexibility to define custom behaviors and performance limitations.
Since this paradigm relies on predefined recognition methods, users can often not optimize the recognition
algorithms to their applications.

In rule-based programming, the user defines which predefined behaviors should be executed upon the occurrence
of predefined events. Depending on the variety of events and behaviors available in the toolkit, relatively complex
programs can be created with this technique by connecting events to behaviors that might themselves trigger
other events. Toolkits that rely on this method include: Phidgets [17], Calder [36], Intuino [55], Amarino [31].

Flow-based programming is a popular visual programming approach where functionality commonly used
in a particular domain is modularized in so-called nodes. Nodes are visual representations that encapsulate
functionality and can be manipulated over a graphical user interface. A flow-based program looks like a directed
graph; users draw arrows between nodes to define the order of execution of the nodes as well as the flow of data
between them. Several toolkits have taken advantage of this programming technique in the past, including iStuff
Mobile [3], the CRN Toolbox [4] and Interactex [20].

In block-based programming, different programming constructs (for loops, if-conditions, variables) are repre-
sented visually in the form of blocks that can be otherwise used as in conventional programs. While the visual
representations of blocks make it easier to understand the syntax of a program (e.g., to understand the scope of a
for loop), users still need to be able to create programs using conventional programming constructs. Toolkits that
feature block-based programming include: Modkit [40] and AppInventor'.

Previously developed toolkits have also relied on text-based programming approaches, including scripting and
domain-specific languages. For example, the Weave toolkit [9] provides high-level APIs in Javascript for rapid
prototyping wearable device applications and C4 [33] is a script language with APIs to manipulate and animate
media objects such as images and movies in mobile device applications.

Since the programming by demonstration approach hides the recognition algorithm from developers, it also
takes away the opportunity for developers to optimize it, which we considered important due to the limited
computational resources available in a wearable device. Hence, we decided against it. We also thought that a
rule-based programming paradigm would not provide developers enough freedom to create and optimize activity
recognition algorithms. Furthermore, we considered that a block-based programming paradigm would make sense
for relatively simple programs developed for educational purposes, but not for activity recognition applications.
Since activity recognition applications often rely on similar functionality (signal processing and feature extraction
algorithms), we opted to encapsulate this functionality under a uniform interface and made it available for reuse
within a flow-based programming environment. However, we thought that a visual programming approach
alone would be prone to scalability issues when developing complex recognition algorithms with several feature
extraction methods. Therefore, we decided to offer the same functionality within a text-based programming
language.

Uhttp://appinventor.mit.edu
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3 THE WEARABLES DEVELOPMENT TOOLKIT

The WDK consists of a library of reusable software components and a set of tools built on top of them. This section
first discusses the goals we aimed for in the design of the WDK and then describes the reusable components,
tools and main features in the WDK. The WDK is implemented in Matlab and is open source? under MIT license.
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Fig. 1. Typical development lifecycle of an activity recognition algorithm. Developers usually engage in a series of iterations
to collect and annotate a data set, study the collected data and then develop one or more recognition algorithms, assess and
optimize their performance until the requirements of the application are met.

3.1 Design Goals

We designed the WDK based on the following design goals:

Low entrance barrier. The development of a wearable system requires knowledge from multiple disciplines
including data analysis, signal processing, pattern recognition and embedded firmware development. Hence,
their entrance barrier is still high. However, many wearable systems rely on similar functionality (e.g., feature
extraction methods) and are developed in a similar way, as illustrated by Figure 1. A main goal of the WDK is to
provide a simple way for developers to reuse common functionality as well as to ease the development tasks.

Extensibility. Even if the most common functionality used across activity recognition applications was made
available for reuse within a toolkit, developers are likely to need new functionality for their particular applications,
such as custom feature extraction algorithms. For this reason, one goal in the design of the WDK was to enable
its set of available functionality to be extensible by developers with little effort.

Assessment of the computational requirements. Activity recognition applications are usually constrained
by the computational capabilities of the wearable device. In order to study the suitability of a recognition algorithm
to a particular wearable device, developers need to assess its computational requirements (CPU speed, memory
capacity, battery duration). As data analysis tools used to develop wearable device applications not always provide
an insight into the computational requirements of an algorithm, these are often estimated once the algorithm is

Zhttps://github.com/avenix/WDK
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ported to the target device. A goal in the design of the WDK was to aid developers with an early estimation of
the computational requirements of a recognition algorithm.

Recognition insight. Most activity recognition applications with wearable sensors extract patterns in a stream
of sensor data using machine learning classifiers. While existing tools provide aggregated metrics describing
the performance of a classifier (e.g., accuracy, F1-Score) they don’t provide further insight to aid developers find
issues in the recognition algorithm. A goal we pursued in the design of the WDK was to enable developers to spot
issues in a recognition with a frame-by-frame comparison between the ground truth and the recognition results.

Quick assessment. The training and performance assessment of a recognition algorithm is usually a compu-
tationally intensive task. As a consequence, the iterative process to develop, optimize and assess the performance
of an activity recognition algorithm could be hindered by long algorithm execution times. Therefore, in the
design of the WDK we aimed for solutions to quickly execute and assess recognition algorithms.

3.2 Architecture

Figure 2 illustrates the architecture of the WDK. The WDK is based on a repository architectural style. The
repository consists of a set of reusable components organized as a layered architecture on top of the Matlab runtime
environment. The middle layer of the repository contains the runtime components, a set of procedures executed
by activity recognition algorithms, whereas the top layer contains functionality to facilitate the development of
such algorithms. The different tools in the WDK create, make changes to, simulate and assess the performance
of activity recognition algorithms using the abstractions in the repository. Applications running on wearable
devices rely on the runtime components to execute the activity recognition algorithms created with the WDK.
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Fig. 2. The WDK is based on a repository architecture. The different tools in the WDK use the repository to create activity
recognition algorithms which are executed by applications running on a wearable device.

The main design goal that drove our decision for this architecture was the extensibility goal. The repository
architecture decouples the reusable components from the tools, enabling the components to be reused indepen-
dently of the tools and the tools to be extended without changes to the reusable components. It also decouples the
different tools from each other, as they interact only indirectly through the repository. This facilitates extending
each tool without affecting the other tools. In addition, decoupling the runtime components from the rest of the
toolkit eases their reuse by the wearable applications.

The decision to base the WDK on Matlab was mainly driven by the low entrance barrier goal. Matlab facilitates
data analysis tasks with a broad set of functionality and native language semantics to perform arithmetic,
statistical and signal processing operations on multi-dimensional arrays of data. This functionality can be used in
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combination with the set of reusable components in the WDK to manipulate and process data. Another alternative
would have been Python in combination with third-party libraries such as NumPy, Matplotlib, TensorFlow and
Keras.

3.3 Reusable Components

Other toolkits have lowered the entrance barrier to the development of different applications by hiding implemen-
tation details behind high-level components. Similarly, the WDK provides a set of high-level reusable components
with functionality commonly used across activity recognition applications. To reuse a component, developers
don’t have to understand its implementation, but only what it does and what data types it requires and produces.

Table 1. Summary of the functionality in the WDK’s repository. Signals are two-dimensional arrays of floating-point values.
Events represent a specific sample in a Signal and store an integer timestamp and a floating-point value. Segments represent
a range of samples in a Signal and contain a two-dimensional array of floating-point values and the start and end indices in
the original Signal. FeaturesTables are two-dimensional arrays of floating-point features and an 8-bit integer label column.
ClassificationResults are arrays of 8-bit integer labels predicted by a machine learning classifier.

Component Type  Input Output Used to...
Preprocessing Signal Signal transform a Signal and prepare it for further processing
o Event Detection Signal Events detect the occurrence of specific events (e.g., peaks) in a Signal
E Segmentation Signal / Events Segments divide a Signal into regions of interest
S Feature Extraction Segments FeaturesTable compute time or frequency-domain features of a Signal
& (Classification FeaturesTable ClassificationResult  predict a label for each feature vector in a FeaturesTable
Postprocessing ClassificationResult  ClassificationResult —add, remove or alter labels in a sequence of predicted labels
Utilities multiple multiple split, merge or transform data (e.g., extract values from a Signal)
% File Management ~ N/A multiple load and parse a data file or an annotations file
g Labeling Segments Segments assign Labels to Events or Segments using an annotations file
% Validation FeaturesTable ClassificationResult  train and evaluate a machine learning classifier
g Utilities multiple multiple different functions used at development time (e.g., feature selection)

Table 1 provides a summary of the reusable components in the WDK and the data types they take as input
and produce as output. The runtime components encapsulate methods for each stage of the Activity Recognition
Chain [7], including: preprocessing, event detection, segmentation, feature extraction, classification and post-
processing. The development components offer functionality needed to manipulate the data used by the runtime
components, label the segments produced by a segmentation algorithm and validate machine learning classifiers.
Most of the preprocessing, feature extraction, classification and validation algorithms are standard off-the-shelf
methods commonly used in activity recognition and offered by Matlab. In contrast, most of the event detection,
segmentation, labeling and postprocessing components are our own implementations of less common algorithms
described in different scientific papers [6, 7, 10, 14, 45] or derived from our own previous work. A full list of the
components offered by the WDK until the date of submission of this article is available in the Appendix.

The set of reusable components is designed as a modular object-oriented architecture based on a pipes and
filter architectural style. The reusable components act as filters: they receive data, process it and pass it over to
other components. Developers create recognition algorithms by instantiating components and connecting them
together. An algorithm is represented as a directed graph and executed with a stack in a depth-first order. To
extend the functionality available in the repository, developers only have to subclass the Computer class and
implement its compute method.

3.4 Tools

The WDK offers four tools to support the main tasks in the development lifecycle of an activity recognition
application: the Annotation tool is used to annotate a time series data set, the Analysis tool provides a way to
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study the data and segments produced by a segmentation algorithm, the Development tool enables the creation
of activity recognition algorithms with the set of components and the Assessment tool is used to evaluate the
runtime performance of a recognition algorithm.

The Annotation tool is used to add annotations to a multi-dimensional time series signal. The tool supports
two kinds of annotations: event annotations and range annotations. Event annotations correspond to events that
occur at specific moments in time (i.e., a single timestamp) and range annotations correspond to activities that
have a duration in time (i.e., two timestamps indicating start and an end of the activity). Both annotation types
can be used simultaneously.
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Fig. 3. The Annotation tool displays the squared magnitude of the accelerometer signal collected by a motion sensor attached
to a cow. The individual strides of the cow have been annotated as event annotations (red) and the walking and running
activities as range annotations (black rectangles).

Video is commonly used as a reference to annotate collected wearable sensor data. The Annotation tool displays
video and data next to each other and automatically updates the current video frame to the current data selection
and vice-versa. Users synchronize video and data once by providing two video frames and two data timestamps
which correspond to the same event. In addition, external markers can be displayed on top of the data when
annotations are performed in real time (i.e., during the data collection) or using external video annotation
software.

The Analysis tool provides insight into the behavior of an activity recognition algorithm by displaying the
segments produced by it. To this end, developers design an activity recognition algorithm either directly over the
user interface of the Analysis tool or by importing it from the Development tool. The segments produced by the
algorithm are then labeled, grouped by activity and shown to the user. A visualization strategy can display the
segments next to each other, as shown in Figure 4, or on top of each other to help spot the pattern or signature of
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a particular activity. A particular kind of recognition algorithm generates segments from the annotations, which
can be helpful to review the annotations and to gain insight into the patterns the algorithm should recognize.
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Fig. 4. The Analysis tool shows segments produced by a recognition algorithm corresponding to different physical rehabilita-
tion exercises performed by patients after a hip replacement surgery.

The Development tool is a visual programming interface to enable less experienced users to create applications
by reusing the components in the WDK. To this end, we extended Node-RED, a popular flow-based programming
platform with a Javascript implementation of each reusable component. This implementation is available in a
separate open source repository’. Algorithms created in Node-RED can be imported and executed in the different
tools of the WDK. Figure 5 shows a simple activity recognition algorithm developed with the Development tool.

mean

featureExtractor — knnClassifier

ES
a

fileLoader —o~ slidingWindow

zcr

Fig. 5. Activity recognition algorithm developed in the Development tool. The algorithm generates consecutive segments of a
one-dimensional signal using a SlidingWindow. For each segment, it extracts the mean, standard deviation and zero-crossing
rate features. The featureExtractor groups the three features into a FeaturesTable, which is passed as input to a KNN classifier.

The Assessment tool enables the assessment of activity recognition algorithms regarding their recognition and
computational performance. To this end, the WDK simulates the execution of an activity recognition algorithm
and computes different metrics. The recognition performance of an algorithm is quantified by the following
metrics: accuracy, precision, recall, F1-Score and confusion matrix. These metrics are calculated per data file and
activity (i.e., class). The computational performance is quantified with three cost metrics: execution, memory and
communication costs. To enable developers to compare different architectures of their wearable systems, the WDK
estimates these metrics for each stage of a recognition algorithm. These metrics are averaged across data files and
displayed over the user interface for each algorithm execution. Next subsection describes how the computational
performance metrics are computed.

3https://github.com/avenix/WDK-RED
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3.5 Computational Performance Assessment

Every reusable component in the WDK computes three computational performance metrics: execution, memory
and communication cost. The execution cost is an estimation of the number of floating point operations performed
by the recognition algorithm normalized by the amount of data samples provided as input. The memory cost
is an estimation of the maximum amount of memory required to execute a recognition algorithm. Execution
and memory costs are calculated at runtime by executing a recognition algorithm. Each reusable component
computes its execution and memory costs for a provided input based on the values of its properties at runtime.
The execution cost of an algorithm is then calculated by adding the execution costs returned by each reusable
component every time their compute method is invoked. The memory cost is calculated by adding the memory
cost returned by each component in a recognition algorithm once. The communication cost of an algorithm is
computed by adding up the amount of bytes produced by the last component in the algorithm. The execution,
memory and communication costs of each reusable component are listed in Section A in the Appendix.

3.6 Frame-by-frame Analysis

Many activity recognition applications are evaluated with respect to time [7]. To provide further insight into the
recognition performance of an algorithm with respect to time, the Assessment tool displays a frame-by-frame
comparison between the ground truth and the classifier’s prediction on top of the raw data and reference video.
To this end, the WDK stores the list of labels predicted by a classification algorithm, feature vectors extracted
by a feature extraction algorithm, segments generated by a segmentation algorithm and signals produced by a
preprocessing algorithm. The start and end index of a segment are used to correlate predicted labels to original
annotations in the ground truth.

3.7 Cache

To enable the quick assessment of a recognition algorithm, the WDK stores the execution results of a recog-
nition algorithm in a cache under a hash-key that uniquely identifies the algorithm. This key is generated by
concatenating a description of each component used in the algorithm in depth-first order. The description of a
component is a string containing its name and the value assigned to each of its properties. Before executing a
particular algorithm, the WDK loads its execution results, in case these are available in the cache.

4 WALKTHROUGH: GOALIEGLOVE

This section describes step-by-step how to develop an algorithm to recognize the training exercises performed by
soccer goalkeepers including dives, catches and throws with an inertial sensor inserted into goalkeepers’ gloves.
The goal of this application is to give goalkeepers personalized feedback about their training.

4.1 Data Collection

This application uses a data set collected from 7 goalkeepers during their training sessions using a sensor device
based on the ICM20948 9-axis Inertial Measurement Unit. To capture the full range of motion of exercises that
might contain high intensity impacts and rotations, the accelerometer, gyroscope and compass were set to their
maximum ranges: +16 g, £2000 dps and +4900 uT respectively, as done in similar IMU-based sports applications
[6, 18, 53]. The sensor device collected data at 200 Hz and normalized it to the range [—1, 1]. Each training session
lasted an average of 33 minutes. The training sessions were recorded on video for annotation purposes. On
average, each video and data file in binary format had a size of 2.22 GB and 18.25 MB, respectively. To synchronize
the data and video, goalkeepers were asked to applaud three times in front of the camera between exercise sets.
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4.2 Data Annotation

This application aims at detecting sporadic events that have a high energy of motion. Previous work has detected
similar events by finding peaks on the (squared) magnitude of acceleration or gyroscope signals [6, 18, 23]. In
order to be able to assess the performance of a peak detection algorithm later on, we add an event annotation to
each peak in the magnitude of acceleration that corresponds to an exercise repetition. We also annotate other
motions with high accelerations performed often by goalkeepers such as ball passes and bouncing the ball on the
ground. Annotating these motions will enable us to train a classifier to filter these motions out in case they are
detected. The ground truth contains 4153 annotated motions, out of which 916 correspond to relevant exercise
repetitions and 3237 are instances of irrelevant motions.

4.3 Analysis

Most relevant exercises have a high intensity of acceleration. We know that high intensity accelerations can
be detected using a peak detector. Therefore, we use the Analysis tool to study the signal to determine how
to create segments of data around the peaks detected by a peak detector. Figure 6 shows the data around the
relevant events we annotated. We observe that the characteristic motion of most exercises starts approximately
200 samples before the peak and that most exercises end shortly after it. Furthermore, we observe that the relevant
motion previous to the peak might last longer than a second (200 samples) in some exercises such as the dives.
However, extending the segments to more than 200 samples before the peak would cause motion to be included
in the segment that is not characteristic of most exercises. Furthermore, longer segments increase the amount
of memory required by the device. Based on these observations, we decide to segment the signal according to:
[p — 200, p + 30].

Dive Right Catch Hand Jump Catch Stand Throw Low

0 200 400 600 0 200 400 600 0 200 400 600 O 200 400 600
Fig. 6. The Analysis tool displays the magnitude of acceleration of segments corresponding to different exercises plotted on

top of each other and grouped by their label. We marked the parts of the signal that contain motion characteristic of each
exercise with a green overlay. We used this visualization to devise an event detection and segmentation algorithm.

Dive Right Catch Hand Jump Catch Stand Throw Low
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Fig. 7. The exercises performed by soccer goalkeepers can be divided in three sub-segments. The range [181, 230] (orange
overlay) corresponds to a ball or ground contact. The range [61, 180] (blue overlay) can provide information to determine
whether the exercise is a dive or a jump, as these exercises present more acceleration in this range than the other ones. The
range [1 — 60] (green overlay) can be used to recognize dives due to the arm swing goalkeepers perform before a dive.
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To decide what features should the algorithm extract for each segment, we study the characteristic motions of
the different exercises in the Analysis tool, as shown in Figure 7. Most exercises consist of sequences of motions.
For example, the Jump Catch Stand consists of a jump, a ball catch in the air and a ground contact. Based on this
analysis, we decide to divide segments in three sub-segments: [1, 60], [61, 180] and [181, 230] and extract a total
of 45 time-domain features including: Min, Max, Mean, Median, Variance, STD and AUC computed on different
axes of the accelerometer and magnetometer signals for each sub-segment.

4.4 Development

Next, we develop the algorithm shown in Listing 1 in a Matlab script. The algorithm first selects all three
accelerometer axes in the input Signal using the AxisSelector and passes the resulting Nx3 Signal to the Magnitude.
The Magnitude computes the magnitude of each accelerometer vector in the input Signal and passes the computed
magnitude in an Nx1 Signal to the SimplePeakDetector. The SimplePeakDetector detects peaks in the magnitude
Signal and returns the Events of the detected peaks. The EventSegmentation generates Segments around the
detected peaks by extracting the 200 samples to the left of the detected peak and 30 samples to its right. The
Segments are passed to a FeatureExtractor (loaded from the features.mat file), which extracts the 45 features
mentioned in the previous subsection for each Segment and outputs a FeaturesTable. The FeatureNormalizer
normalizes the FeaturesTable so that each of its feature columns has zero mean and a standard deviation of 1 and
passes it to the SVMClassifier. The SVMClassifier returns the predicted labels in a ClassificationResult object.

%computes magnitude of acceleration %computes normalization values and normalizes
axisSelector = AxisSelector(1:3); featureNormalizer = FeatureNormalizer();
magnitude = Magnitude(); featureNormalizer.fit(trainTable);

featureNormalizer.normalize(trainTable);
%minPeakHeight=0.8, minPeakDist=100

peakDetector = SimplePeakDetector(0.8,100); %order=1, boxConstraint=1.0
classifier = SVMClassifier(1,1);
%segments in the range: [p-200,p+30] classifier.train(trainTable);

segmentation = EventSegmentation(200,30);
components = {axisSelector, magnitude, peakDetector,

%loads feature extraction algorithm segmentation, featureExtractor,
featureExtractor = featureNormalizer, classifier};
Dataloader.LoadComputer('features.mat'); algorithm =

Computer.ComputerWithSequence(components);

Listing 1. Algorithm to detect and classify soccer goalkeeper training exercises. The algorithm starts at the left and continues
at the right column. The trainTable variable in the right column has been generated with a similar sequence of computations,
excluding the featureNormalizer and classifier components and using an EventSegmentsLabeler after the segmentation.

4.5 Performance Assessment

After having developed the algorithm, we use the Assessment tool to assess and optimize its recognition perfor-
mance. We test different values for the properties minPeakHeight and minPeakDistance of the SimplePeakDetector.
Low values for these parameters might cause more irrelevant motions to be detected whereas high values might
cause relevant exercises to be missed. We use the frame-by-frame analysis to understand the effects of different
values for these parameters on the data set, as shown in Figure 8. After this analysis, we decide for the values:
minPeakHeight = 0.8 and minPeakDistance = 100. The SVMClassifier component configured as: (order = 1 and
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boxConstraint = 1.0) achieves the highest performance with an accuracy of 81.8%, a precision of 81.4% and a
recall of 79.8%. Adapting the previous script to select subsets of features with the FeatureSelector component
reveals that up to 5 features can be excluded with a minimal drop in accuracy.
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Fig. 8. The frame-by-frame analysis displays the results of a recognition algorithm on top of the magnitude of acceleration.
The algorithm detected four exercises (shown in green) and two irrelevant motions (shown in red). After this goalkeeper
performs a throw, the ball is passed back at him with high intensity, which is detected (as a false positive) by the algorithm.

The Assessment tool provides an overview of the computational performance of different architectures to run
this algorithm. If only the segmentation was done on the wearable device, 657.7 KB of data would have to be
transferred from the wearable device for an average training session. This is calculated by the WDK as an average
of 244 segments per training session with a size of 230x6 values each and using 2 bytes per value. If the feature
extraction was also performed on the wearable device, only 38,1 KB of data would be produced on average per
training (244 feature vectors with 40 features represented with 4 bytes each). Finally, if the classification was
also performed on the wearable device, only 2.1 KB of data would be generated (244 1-byte labels and an 8-byte
timestamp). The Assessment tool estimates a memory cost of 2.7 KB for the event detection, segmentation and
feature extraction stages - most of which corresponds to the EventSegmentation component which allocates a
matrix of 230x6 cells of 2 bytes per value.

5 REFERENCE APPLICATIONS

Ledo et al. [35] proposed four types of ways to evaluate toolkits: demonstration, usage, technical performance
and heuristics. Demonstration evaluations show how a toolkit is used to create applications. Usage evaluations
investigate the usability of a toolkit, often by means of user studies. Technical performance evaluations assess
the non-functional requirements of a toolkit such as the recognition accuracy of a created algorithm. A heuristics
evaluation investigates a toolkit’s usability with respect to a set of heuristics, such as Nielsen’s usability heuristics
[43, 44]. The previous section demonstrated the usage of the WDK with a step-by-step walkthrough to create an
application. This section demonstrates the WDK’s versatility to support different applications.

We created the WDK iteratively by extending and refining its abstractions to replicate different activity
recognition applications from the literature and from our previous work. These applications include: an algorithm
to classify daily activities presented by Bao and Intille [5], a smart bandage to track the rehabilitation progress of
patients after a knee injury [21, 25, 26], a chest belt strap band to recognize basketball defensive training exercises,
a lameness detection system for dairy cattle [23, 24], an activity tracker for pigs [22] and a sensor-based horse
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gait and jump detection system for show jumping applications [12, 13]. Next, we demonstrate how two of these
applications are developed using the reusable components in the WDK.

5.1 Daily Activity Monitoring

Listing 2 replicates the activity recognition algorithm presented by Bao and Intille [5]. This algorithm recognizes
physical activities (e.g., walking, sitting, eating) using two-axis accelerometers worn on different parts of the
body. The algorithm processes a stream of sensor values in Segments of 512 samples with 50% overlapping
using the SlidingWindowSegmentation. The SlidingWindowSegmentation passes Segments of 512x2 samples to
a FeatureExtractor. The FeatureExtractor computes a feature vector for each segment it receives as input and
appends it to a FeaturesTable. Each feature vector contains the mean, spectral entropy and spectral energy of
both accelerometer axes and the correlation between the two axes. FeaturesTables output by the FeatureExtractor
are passed to the TreeClassifier, which returns an array of labels in a ClassificationResult.

%segmentSize=512, 50% overlapping function featureExtractor = createFeatureExtractor()
slidingWindow = fftFeatures = FFT();
SlidingWindowSegmentation(512,256); fftFeatures.addNextComputers({SpectralEntropy(),
SpectralEnergy()});
%creates feature extraction algorithm featureComputers = {Mean(),fftFeatures};
featureExtractor =
createFeatureExtractor(); %extract features on accelerometer axes x and y
axisl = AxisSelector(1);%x-axis
%maxNumSplits=30 axis2 = AxisSelector(2);%y-axis
classifier = TreeClassifier(30); axis1.addNextComputers(featureComputers);

axis2.addNextComputers(featureComputers);
%creates algorithm

algorithm = %returns feature extraction algorithm
Computer.ComputerWithSequence ({ featureExtractor = FeatureExtractor({axis1,axis2,
slidingWindow, featureExtractor, Correlation()});
classifier}); end

Listing 2. Algorithm to classify daily activities proposed by Bao and Intille [5] reproduced with the WDK’s components.

5.2 Hip Rehabilitation App

The Hip Rehabilitation App (HipRApp) is a wearable strap band to track the rehabilitation progress of patients who
underwent a hip replacement surgery. It counts the amount of exercise repetitions and walking steps performed
by patients during a training session. The algorithm shown in Listing 3 recognizes exercise repetitions in a stream
of samples produced by a 6-axis inertial sensor (accelerometer and gyroscope) worn by patients at the ankle.
First, the AxisSelector extracts the accelerometer axes from the input data into an Nx3 Signal. The LowPassFilter
applies a Butterworth low-pass filter to each of the Signal’s columns to eliminate high-frequency noise in the
accelerometer signal. The filtered data is processed using a sliding window. For each Segment produced by the
SlidingWindowSegmentation, the Min, Max, Mean, Median, Variance, STD, AUC, AAV, MAD, IQR, RMS, Skewness
and Kurtosis are computed. These features are extracted on every axis of the accelerometer and gyroscope Signals
and aggregated by the FeatureExtractor into a FeaturesTable. The FeatureNormalizer normalizes FeaturesTables
and passes them to the KNNClassifier. The KNNClassifier predicts a label for each row in a FeaturesTable and
returns a ClassificationResult containing an array of predicted labels. Finally, the SlidingWindowMaxLabelSelector
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post-processing component replaces every label at index labellndex in the array of predicted labels with the
most frequent label in the range [labellndex — 3, labelIndex + 3], or with the NULL-class if no label occurs at
least 4 times in the range. This is done to ’favor’ the most frequent label within a 6-label window and avoid the
sporadic misclassification of unrelated exercises or instances of the NULL-class. This increases the recognition
accuracy due to the fact that patients usually perform 10 to 20 repetitions of an exercise in a row.

%select signals 1,2,3 (accelerometer x,y,z) %computes normalization values

axisSelector = AxisSelector(1:3); featureNormalizer = FeatureNormalizer();

%order=1, cutoff=20Hz %k=10, distanceMetric="'euclidean'

lowPassFilter = LowPassFilter(1,20); classifier = KNNClassifier(10, 'euclidean');
%segmentSize=488, 50% overlapping %windowSize=6, minimumCount=4

segmentation = postprocessor = LabelSlidingWindowMaxSelector(6,4);

SlidingWindowSegmentation(488,244);
%creates algorithm

%max, min, etc. on signals 1,2,3,4,5 and 6 components = {axisSelector, lowPassFilter,
features = segmentation, featureExtractor,
FeatureExtractor.DefaultFeatures(); featureNormalizer, classifier, postprocessor};
featureExtractor = algorithm =
FeatureExtractor(features,1:6); Computer.ComputerWithSequence(components);

Listing 3. Algorithm to classify rehabilitation exercises performed by patients of hip replacement. The algorithm starts in
the left column and continues in the right. In a separate script, the classifier is trained and the featureNormalizer is fit with
normalization values.

5.3 Discussion

The incremental development process we used to create the WDK enabled us to assess its coverage of the
functionality present in a variety of applications and to refine it accordingly. The applications presented in this
section demonstrate the WDK’s versatility to different domains and illustrate that complex activity recognition
algorithms can be created with a few components in the WDK.

6 USABILITY EVALUATION

To study the usability of the WDK, we conducted a user study with three participants who used the WDK to
create different applications, as summarized in Table 2. The participants were students of computer science at the
Technical University of Munich who contacted us to write a bachelor’s or master’s thesis at our department after
they read a project description on our department’s website. None of them had previous experience in activity
recognition or in Matlab. They were instructed to develop an application using the WDK during a period of two
to four months. After the development phase, we conducted an semi-structured interview where the participants
described their experiences using the WDK and demonstrated to us how they had used it.
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Table 2. Participants of the first user study and applications they developed using the WDK.

Participant Gender Application

P1 Male GoalieGlove
P2 Male Recognition of basketball defensive training exercises
P3 Female HipRApp

All three participants found the functionality to annotate data while looking at the video useful. P3 said: “The
Annotation tool is very useful because everything is in the same place. I was using DaVinci Resolve for the annotations
in the video but that was a lot of back and forth switching™. The participants also praised the functionality to
compare the segments produced by an algorithm in the Analysis tool. In particular, they welcomed the functionality
to quickly switch between signals to design feature extraction [P2,P3] and event detection algorithms [P1,P2]. P1
said: “Tt’s good to compare different players: what segments are too small and which ones are too big”. Furthermore,
every participant reported that they found the frame-by-frame comparison in the Assessment tool useful in their
projects. Notably, P2 mentioned that he had been using wrongly annotated data for months until he observed a
contiguous sequence of misclassified exercises in the frame-by-frame comparison. He described the insights he
gained as: “if we go frame-by-frame, then we can see that longer strides have a longer intensity and that the player is
lean forward a bit more. That explains that instance A was detected and not instance B”. Furthermore, P2 and P3
mentioned that they could save time by reusing functionality available in the WDK. P3 said: ‘T had to implement
a lot of machine learning algorithms in Python. Here you can reuse a lot of functionality”.

While using the WDK, the participants also mentioned different issues, bugs and feature requests. Two main
issues they mentioned were the difficulty to identify the root of an error in a recognition algorithm they had
developed and the difficulty to understand some of the reusable components in the WDK. Errors when executing
a recognition algorithm were caused when two reusable components were connected to each other, although
the data type produced by the predecessor component was not compatible with the input type required by the
successor component. P1 said: “If something fails, you don’t know what went wrong”. Furthermore, when executing
an invalid algorithm, Matlab displays an error message containing the execution stack trace. Although the first
line in the stack trace contained the name of the reusable component that caused the failure, the participants did
not find this information helpful to identify the root of errors. Based on this feedback, we introduced a major
change to the reusable components to prevent developers from connecting two incompatible components to
each other. To this end, every reusable component now specifies a meta-data describing the type of its input and
output parameters. The output type of a component is used to determine whether it can be connected to another
component. At runtime, the reusable components print an error message when they receive an incompatible
object as input and return an empty object, which causes the execution of an algorithm to stop. Furthermore, we
adapted the user interfaces of every tool in the WDK to dynamically adapt the reusable components developers
can choose from at each stage of the recognition pipeline based on the components selected at the previous
stages.

Participants P1 and P3 also mentioned that they did not understand some of the reusable components available
in the WDK, such as the ManualSegmentation and the different components to label events and segments. P1
said: “The Labeling is not clear what it does” and also pointed out that he did not know what the LabelMapper
was for. P3 reported that she did not know how to “get to a segment from an event”, which can be done with
the EventSegmentation. To address this issue, we documented every reusable component in the WDK’s GitHub
website. For each reusable component, the documentation describes the type of input it requires and output it
produces.

“DaVinci Resolve is a video editing and annotation tool: https://www.blackmagicdesign.com/products/davinciresolve/
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The participants also mentioned several minor issues. When using the Annotation tool, the participants
mentioned the loss of annotations because of closing the window without saving them beforehand [P2], the lack
of information regarding what signals were being produced when a preprocessing algorithm was executed [P3],
the lack of a legend to indicate how computed signals mapped to colors in the plot [P3] and the difficulty to
recognize a data selection due to the similarity of the colors used to plot data and to select a range of data [P1,P3].
Regarding the Analysis tool, the participants pointed out that the tool was too "laggy’ when zooming into a plot
with more than 400 segments [P1, P2], the lack of feedback to indicate that a time-intensive computation had
finished [P1], that there was no way to know which table was editable and which one was not [P1] and that the
labels shown above each list box were not consistent, as some of them were numbered and others were not [P3].
P2 also requested a feature to plot different signals without having to reset the zoom level of the plots. In the
Assessment tool, the participants had difficulties to create a feature extraction algorithm. This was due to a lack
of consistency between the user interfaces to reuse components in the different stages: for the preprocessing,
segmentation, classification and validation stages, a single reusable component had to be selected from the user
interface, whereas feature extraction algorithms had to be created by selecting multiple components and defining
on which signal each of them were to be computed. P2 and P3 also noted a lack of consistency in the user interface
to select features, which required developers to have executed a recognition algorithm once before a subset
of features could be selected, but provided no indication about this restriction over the user interface. In the
detail view of the Assessment tool, P2 and P3 criticized that the results of the recognition were not always visible
depending on the zoom level of the plot that displays the data. We performed several minor changes to improve
the usability of our toolkit based on the issues mentioned by the participants.

To assess the usability of the improved version of the WDK, we conducted a second user study with two
engineers from the industry. To this end, we contacted two companies located in Munich that had collaborated
with our research lab in the past and asked them to participate in our user study. The first participant (P1)
was a senior software engineer (33 years old) working at a startup that offers professional coaching to soccer
goalkeepers. The second participant (P2) was a recent graduate of computer science (25 years old) working as a
data scientist in a startup specialized in wearable electronics. Both participants had previous experience with
activity recognition. P1 had used mostly Matlab and had only passing experience in Python and P2 had two years
of experience in Python and was familiar with the Node-RED platform but had no experience in Matlab.

We gave the participants specific tasks to solve with the WDK while thinking out-loud using the data from
the GoalieGlove application. The tasks included annotating a data set with event and range annotations, finding
outliers in the annotated data set, comparing the different signals (accelerometer, gyroscope and magnetometer)
corresponding to two exercises, discussing possible feature extraction algorithms based on the exercise signatures,
developing the algorithm we presented in Section 4 and assessing its recognition performance. After solving
these tasks, we conducted an unstructured interview with the participants to inquire about their impression
using the WDK. Finally, the participants were given a questionnaire with seven 5-point Likert scale questions.
Each session lasted approximately 90 minutes. Table 3 shows the questionnaire we asked and the participant’s
answers.

The ease to understand the reusable components in the WDK was rated 4 by P1 and 3 by P2. While the
participants understood how to instantiate components and connect them together in the Development tool and
in the code, they acknowledged the need to refer to the documentation to understand the functionality behind the
different components. P1 said: “T am not sure what all of these do, but I am sure you will have some documentation”.
P2 had difficulties to understand how to combine the event detection and segmentation components: “Obviously
you need some user manual to know that SimplePeakDetector works with the EventSegmentation” but had no
difficulty reusing the feature extraction and classification components.

We found that both participants were quickly able to understand what event and range annotations are and to
annotate a data set using the Annotation tool. They welcomed the Annotation tool and mentioned that they were
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Table 3. Questionnaire and answers of participants of the second study. The scales were: 1 (very difficult) to 5 (very easy) for
Q1 and Q2; 1 (useless) to 5 (very useful) for Q3-Q6 and 1 (very unlikely) to 5 (very likely) for Q7.

# Question P1 P2
Q1 Do you find the reusable components in the WDK easy to understand?

Q2 Do you find the tools in the WDK easy to use?

Q3 Do you find the WDK useful to annotate your data?

Q4 Do you find the WDK useful to study your data set?

Q5 Do you find the WDK useful to develop a recognition algorithm?

Q6 Do you find the WDK useful to assess the performance of a recognition algorithm?
Q7 How likely are you to use the WDK within your organization?
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not aware of other free annotation tools for time series that display video files next to the data. Both participants
rated the WDK’s usefulness to annotate data with a 5 (very useful). We also observed that the participants could
use the Analysis tool without issues to display the annotated data. They quickly found outlier motions in the
annotations and discussed possible feature extraction algorithms based on the data. Both participants found the
tool useful to make sense of their data sets and design feature extraction algorithms. P1 said: “The Analysis App is
the most useful tool because it helps you see what’s going on with the data. It helps you choose the features because
you can see patterns in the data and on which axes to calculate the feature”. The participants rated the WDK’s
usefulness to study their data sets with a 5 (P1) and a 4 (P2).

Both participants rated the WDK’s usefulness to assess the performance of a recognition algorithm with a
score of 5 (P1) and 4 (P2). In particular, the functionality to display the recognition results on top of the raw data
in the frame-by-frame analysis was identified as the most convenient feature. P2 said: “the part of the assessment
can differentiate [the WDK] from other tools. [...] if you see a confusion matrix you see it misclassifies these exercises
but you don’t have a clue why [...]. It can help a lot to see the video and see that because of this it was not properly
predicted and see that together with the data”.

Both participants praised the WDK and rated how likely they were to use it within their organizations with a
5 (very likely). P2 said: “there are no tools that are publicly available to developers so they create their own software
[...] or they just do it intuitively by using standard parameters trusting they will work for their specific problem. With
this tool I can see the data with different parameters and decide”. On the other hand, both participants pointed out
Matlab license fees as an issue and mentioned that their organizations would not be willing to afford the fees.

6.1 Discussion

Based on what we observed, we feel confident that the WDK can significantly lower the entrance barrier to
the development of activity recognition applications. The participants of our studies mentioned that they were
not aware of similar tools and found the WDK useful to automatize their development tasks. In particular, they
praised the ability to reuse a broad set of existing functionality in their own applications. The features perceived
to be the most useful by the participants are the functionality to annotate the data together with the video in the
Annotation tool, to quickly assess and optimize the parameters of different algorithms and the frame-by-frame
analysis to correlate the recognition results to the original data and reference video.

Furthermore, the participants of the user studies mentioned the difficulty to understand some reusable com-
ponents. While the WDK enables the reuse of high-level components without having to understand their
implementation details, developers still need to 1) be familiar with the Activity Recognition Chain and 2) un-
derstand the function, inputs and output produced by the components in the WDK. However, we believe that
understanding and reusing the components in the WDK is significantly less time consuming than implementing
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a recognition algorithm without them. To facilitate learning the Activity Recognition Chain as well as the
abstractions behind the WDK, we recently created a tutorial on activity recognition that relies on the reusable
components in the WDK®. We found that most developers with no experience in activity recognition are able
to finish the tutorial in a few hours and that they have less questions and are more effective at using the WDK
afterwards.

In addition, both engineers from the second user study pointed out Matlab’s license fees as a main limitation
and suggested Python as a free alternative. In the future, the components the WDK offers could be re-implemented
in Python or C++, or a combination of both. A C++ implementation of the runtime components would avoid
differences between the execution of algorithms in the development environment and target device and is likely
to lead to better execution performance. The current design of the WDK can be reused in future implementations.

7 CONCLUSIONS

This paper presented a toolkit to facilitate the development of activity recognition applications with wearables. In
contrast to previous work, the WDK supports different tasks in the development lifecycle of an activity recognition
application, such as the annotation and analysis of data and the development and performance assessment of an
algorithm. Supporting these tasks within a single environment facilitates an iterative development process which
is often necessary because developers rarely know upfront how to design activity recognition systems but rather
develop them iteratively. To ensure the versatility of the toolkit, we developed it incrementally based on a variety
of applications from different domains including sports, health, animal welfare and daily activity monitoring. We
also collected feedback from different users with varying levels of experience in activity recognition and adapted
the WDK to ensure it meets their needs.

One aspect we haven’t studied until now is how well the execution and memory costs computed by the WDK
correlate to the amount of floating point operations and memory an actual algorithm implementation in the
target device would require. As these metrics depend on the target device, its architecture and drivers, estimating
them accurately at development time can be challenging. However, the costs estimated by the WDK provide a
rough estimate that can be used to compare two or more algorithms to each other and make decisions early in the
development lifecycle of an activity recognition application. Furthermore, the execution and memory costs of each
reusable component can be adapted to a specific benchmark by modifying two lines of code in each component.

Furthermore, the current version of the WDK is limited to local computations. If the scale of the data exceeds
what is physically possible to compute in a reasonable amount of time on a local device, developers might need
to use remote computing power. Future work could extend the WDK to enable the simulation and assessment of
activity recognition algorithms in parallel. To this end, every stage until the classification stage could be executed
in parallel for the different input data files.

Despite the variety of reusable components and functionality already available in the WDK, the toolkit is far
from finished. We are still extending its set of reusable components, refactoring its code, improving its usability
and documenting it. A particular feature we are working on is the deployment of recognition algorithms into
wearable devices. Our vision is to do so by sending an algorithm configuration wirelessly, without recompiling
and flashing a firmware. To this end, we are currently porting the WDK’s runtime components to C++.

We also haven’t studied how to support application developers at creating applications that rely on activity
recognition algorithms. We believe that many applications handle recognition results in similar ways. For example,
they keep track of a training performance over time and compare the training performances among users. Future
work could identify patterns of usage of recognized activities within applications and facilitate their development.

While the WDK eases the effort to develop recognition algorithms, these still need to be crafted manually.
Different groups are investigating how to avoid this manual effort by adapting artificial neural networks to activity

Shttps://github.com/avenix/ARC-Tutorial
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recognition applications with wearables [41, 60]. We are currently studying how to automatize the development
of recognition algorithms by means of generative design. In generative design, the assembly of activity recognition
algorithms is formulated as an optimization problem where the recognition performance (e.g., F1-Score) is
used as an optimization metric and the computational requirements (e.g., memory, energy consumption) derive
into constraints to the optimization. The reusable components in the WDK and the functionality to assess the
performance of an algorithm represent a first step towards the realization of this idea.

ACKNOWLEDGMENTS

This work would not have been possible without the support from Prof. Bernd Briigge and Prof. Dan Siewiorek
over the last two years. The author would also like to thank Prof. Oliver Amft and Prof. Antonio Kriigger for
allowing this work to be presented at their research labs and providing valuable ideas to improve the WDK.

REFERENCES

[1] Oliver Amft. 2010. A wearable earpad sensor for chewing monitoring. In SENSORS, 2010 IEEE. IEEE, 222-227.
[2] Daniel Ashbrook and Thad Starner. 2010. MAGIC: a motion gesture design tool. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2159-2168.
[3] Rafael Ballagas and Faraz Memon. 2007. iStuff mobile: rapidly prototyping new mobile phone interfaces for ubiquitous computing.
Proceedings of the SIGCHI conference on Human factors in computing systems (2007), 1107-1116. https://doi.org/10.1145/1240624.1240793
[4] David Bannach, Oliver Amft, and Paul Lukowicz. 2008. Rapid Prototyping of Activity Recognition Applications. IEEE Pervasive
Computing 7, 2 (apr 2008), 22-31. https://doi.org/10.1109/MPRV.2008.36
[5] Ling Bao and Stephen S Intille. 2004. Activity recognition from user-annotated acceleration data. In International conference on pervasive
computing. Springer, 1-17.
[6] Peter Blank, Julian Hoflbach, Dominik Schuldhaus, and Bjoern M Eskofier. 2015. Sensor-based stroke detection and stroke type
classification in table tennis. In Proceedings of the 2015 ACM International Symposium on Wearable Computers. ACM, 93-100.
[7] Andreas Bulling, Ulf Blanke, and Bernt Schiele. 2014. A tutorial on human activity recognition using body-worn inertial sensors. ACM
Computing Surveys (CSUR) 46, 3 (2014), 33.
[8] Jay Chen, Karric Kwong, Dennis Chang, Jerry Luk, and Ruzena Bajcsy. 2006. Wearable sensors for reliable fall detection. In 2005 IEEE
Engineering in Medicine and Biology 27th Annual Conference. IEEE, 3551-3554.
[9] Pei-YuPeggy Chi and Yang Li. 2015. Weave: Scripting cross-device wearable interaction. In Proceedings of the 33rd annual ACM conference
on human factors in computing systems. ACM, 3923-3932.
[10] Guglielmo Cola, Marco Avvenuti, Alessio Vecchio, Guang-Zhong Yang, and Benny Lo. 2015. An on-node processing approach for
anomaly detection in gait. IEEE Sensors Journal 15, 11 (2015), 6640-6649.
[11] Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. 2004. a CAPpella. In Proceedings of the 2004 conference on Human
factors in computing systems - CHI "04. ACM Press, New York, New York, USA, 33-40. https://doi.org/10.1145/985692.985697
[12] Jessica Echterhoff, Juan Haladjian, and Bernd Briigge. 2018. Gait Analysis in Horse Sports. In Proceedings of the Fifth International
Conference on Animal-Computer Interaction. ACM, 3.
[13] Jessica Echterhoff, Juan Haladjian, and Bernd Briigge. 2018. Gait and Jump Classification in Modern Equestrian Sports. In Proceedings of
the 2018 ACM International Symposium on Wearable Computers. ACM, 88-91.
[14] Davide Figo, Pedro C Diniz, Diogo R Ferreira, and Jodo M Cardoso. 2010. Preprocessing techniques for context recognition from
accelerometer data. Personal and Ubiquitous Computing 14, 7 (2010), 645-662.
[15] Francine Gemperle, Chris Kasabach, John Stivoric, Malcolm Bauer, and Richard Martin. 1998. Design for wearability. In digest of papers.
Second international symposium on wearable computers (cat. No. 98EX215). IEEE, 116-122.
[16] Nicholas Gillian and Joseph A Paradiso. 2014. The gesture recognition toolkit. The Journal of Machine Learning Research 15, 1 (2014),
3483-3487.
[17] Saul Greenberg and Chester Fitchett. 2001. Phidgets. In Proceedings of the 14th annual ACM symposium on User interface software and
technology - UIST "01. ACM Press, New York, New York, USA, 209. https://doi.org/10.1145/502348.502388
[18] Benjamin H Groh, Martin Fleckenstein, Thomas Kautz, and Bjoern M Eskofier. 2017. Classification and visualization of skateboard
tricks using wearable sensors. Pervasive and Mobile Computing 40 (2017), 42-55.
[19] Tobias Grosse-Puppendahl, Yannick Berghoefer, Andreas Braun, Raphael Wimmer, and Arjan Kuijper. 2013. OpenCapSense: A rapid
prototyping toolkit for pervasive interaction using capacitive sensing. In 2013 IEEE International Conference on Pervasive Computing and
Communications (PerCom). IEEE, 152-159.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.


https://doi.org/10.1145/1240624.1240793
https://doi.org/10.1109/MPRV.2008.36
https://doi.org/10.1145/985692.985697
https://doi.org/10.1145/502348.502388

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]
(38]
(39]

(40]

The Wearables Development Toolkit: An Integrated Development Environment for Activity... « 134:21

Juan Haladjian, Katharina Bredies, and Bernd Bruegge. 2016. Interactex: An integrated development environment for smart textiles. In
Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2016 ACM
International Symposium on Wearable Computers. ACM, 8-15. https://doi.org/10.1145/2971763.2971776

Juan Haladjian, Katharina Bredies, and Bernd Bruegge. 2018. KneeHapp Textile: A Smart Textile System for Rehabilitation of Knee
Injuries. In Proceedings of the 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, 9-12.

Juan Haladjian, Ayca Ermis, Zardosht Hodaie, and Bernd Briigge. 2017. iPig: Towards Tracking the Behavior of Free-roaming Pigs. In
Proceedings of the Fourth International Conference on Animal-Computer Interaction (ACI2017). ACM, New York, NY, USA, 10:1—-10:5.
https://doi.org/10.1145/3152130.3152145

Juan Haladjian, Johannes Haug, Stefan Niiske, and Bernd Bruegge. 2018. A Wearable Sensor System for Lameness Detection in Dairy
Cattle. Multimodal Technologies and Interaction 2, 2 (2018), 27.

Juan Haladjian, Zardosht Hodaie, Stefan Niiske, and Bernd Briigge. 2017. Gait Anomaly Detection in Dairy Cattle. In Proceedings of the
Fourth International Conference on Animal-Computer Interaction (ACI2017). ACM, New York, NY, USA, 8:1—-8:8. https://doi.org/10.1145/
3152130.3152135

Juan Haladjian, Zardosht Hodaie, Han Xu, Mertcan Yigin, Bernd Bruegge, Markus Fink, and Juergen Hoeher. 2015. KneeHapp: A
Bandage for Rehabilitation of Knee Injuries. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers. ACM, 181-184.

Juan Haladjian, Constantin Scheuermann, Katharina Bredies, and Bernd Bruegge. 2017. A Smart Textile Sleeve for Rehabilitation of
Knee Injuries. In Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of
the 2017 ACM International Symposium on Wearable Computers (UbiComp ’17). ACM, New York, NY, USA, 49-52. https://doi.org/10.
1145/3123024.3123151

Bjorn Hartmann, Leith Abdulla, Manas Mittal, and Scott R. Klemmer. 2007. Authoring sensor-based interactions by demonstration with
direct manipulation and pattern recognition. Proceedings of the SIGCHI conference on Human factors in computing systems (CHI 07)
(2007), 145-154. https://doi.org/10.1145/1240624.1240646

Bjorn Hartmann, Scott R Klemmer, Michael Bernstein, Leith Abdulla, Brandon Burr, Avi Robinson-Mosher, and Jennifer Gee. 2006.
Reflective physical prototyping through integrated design, test, and analysis. In Proceedings of the 19th annual ACM symposium on User
interface software and technology. ACM, 299-308.

Steven Houben, Connie Golsteijn, Sarah Gallacher, Rose Johnson, Saskia Bakker, Nicolai Marquardt, Licia Capra, and Yvonne Rogers.
2016. Physikit: Data engagement through physical ambient visualizations in the home. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems. ACM, 1608-1619.

Steven Houben and Nicolai Marquardt. 2015. Watchconnect: A toolkit for prototyping smartwatch-centric cross-device applications. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 1247-1256.

Bonifaz Kaufmann and Leah Buechley. 2010. Amarino: A Toolkit for the Rapid Prototyping of Mobile Ubiquitous Computing. In
Proceedings of the 12th International Conference on Human Computer Interaction with Mobile Devices and Services (MobileHCI °10). ACM,
New York, NY, USA, 291-298. https://doi.org/10.1145/1851600.1851652

Aftab Khan, James Nicholson, and Thomas Pl6tz. 2017. Activity Recognition for Quality Assessment of Batting Shots in Cricket using a
Hierarchical Representation. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 62.
Travis Kirton, Sebastien Boring, Dominikus Baur, Lindsay MacDonald, and Sheelagh Carpendale. 2013. C4: a creative-coding API for
media, interaction and animation. In Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction.
ACM, 279-286.

David Ledo, Fraser Anderson, Ryan Schmidt, Lora Oehlberg, Saul Greenberg, and Tovi Grossman. 2017. Pineal: Bringing Passive
Objects to Life with Embedded Mobile Devices. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM,
2583-2593.

David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and Saul Greenberg. 2018. Evaluation strategies for HCI
toolkit research. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 36.

Johnny C. Lee, Daniel Avrahami, Scott E. Hudson, Jodi Forlizzi, Paul H. Dietz, and Darren Leigh. 2004. The calder toolkit. In Proceedings
of the 2004 conference on Designing interactive systems processes, practices, methods, and techniques - DIS "04. ACM Press, New York, New
York, USA, 167-175. https://doi.org/10.1145/1013115.1013139

Yang Li, Jason I Hong, and James A Landay. 2004. Topiary: a tool for prototyping location-enhanced applications. In Proceedings of the
17th annual ACM symposium on User interface software and technology. ACM, 217-226.

Kent Lyons, Helene Brashear, Tracy Westeyn, Jung Soo Kim, and Thad Starner. 2007. Gart: The gesture and activity recognition toolkit.
In International Conference on Human-Computer Interaction. Springer, 718-727.

Javier Marco, Eva Cerezo, and Sandra Baldassarri. 2012. ToyVision: a toolkit for prototyping tabletop tangible games. In Proceedings of
the 4th ACM SIGCHI symposium on Engineering interactive computing systems. ACM, 71-80.

Amon Millner and Edward Baafi. 2011. Modkit: blending and extending approachable platforms for creating computer programs and
interactive objects. In Proceedings of the 10th International Conference on Interaction Design and Children. ACM, 250-253.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.


https://doi.org/10.1145/2971763.2971776
https://doi.org/10.1145/3152130.3152145
https://doi.org/10.1145/3152130.3152135
https://doi.org/10.1145/3152130.3152135
https://doi.org/10.1145/3123024.3123151
https://doi.org/10.1145/3123024.3123151
https://doi.org/10.1145/1240624.1240646
https://doi.org/10.1145/1851600.1851652
https://doi.org/10.1145/1013115.1013139

134:22  « Juan Haladjian

[41] Vishvak S Murahari and Thomas Pl6tz. 2018. On attention models for human activity recognition. In Proceedings of the 2018 ACM
International Symposium on Wearable Computers. ACM, 100-103.

[42] Michael Nebeling, Theano Mintsi, Maria Husmann, and Moira Norrie. 2014. Interactive development of cross-device user interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2793-2802.

[43] J Nielsen. 1994. Usability Engineering. Academic Press Inc.

[44] Jakob Nielsen and Rolf Molich. 1990. Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, 249-256.

[45] Girish Palshikar and Others. 2009. Simple algorithms for peak detection in time-series. In Proc. 1st Int. Conf. Advanced Data Analysis,
Business Analytics and Intelligence, Vol. 122.

[46] Shyamal Patel, Delsey Sherrill, Richard Hughes, Todd Hester, Theresa Lie-Nemeth, Paolo Bonato, David Standaert, and Nancy Huggins.
2006. Analysis of the Severity of Dyskinesia in Patients with Parkinson’s Disease via Wearable Sensors. In International Workshop on
Wearable and Implantable Body Sensor Networks (BSN'06). IEEE, 123-126. https://doi.org/10.1109/BSN.2006.10

[47] Max Pfeiffer, Tim Duente, and Michael Rohs. 2016. Let your body move: a prototyping toolkit for wearable force feedback with electrical
muscle stimulation. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services.
ACM, 418-427.

[48] Raf Ramakers, Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2016. Retrofab: A design tool for retrofitting physical interfaces
using actuators, sensors and 3d printing. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM,
409-419.

[49] Raf Ramakers, Kashyap Todi, and Kris Luyten. 2015. PaperPulse: An Integrated Approach for Embedding Electronics in Paper
Designs. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI ’15 (2015), 2457-2466.
https://doi.org/10.1145/2702123.2702487

[50] Valkyrie Savage, Colin Chang, and Bjérn Hartmann. 2013. Sauron: embedded single-camera sensing of printed physical user interfaces.
In Proceedings of the 26th annual ACM symposium on User interface software and technology. ACM, 447-456.

[51] Valkyrie Savage, Sean Follmer, Jingyi Li, and Bjorn Hartmann. 2015. Makers’ Marks: Physical markup for designing and fabricating
functional objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. ACM, 103-108.

[52] Giovanni Schiboni and Oliver Amft. 2018. Automatic dietary monitoring using wearable accessories. In Seamless Healthcare Monitoring.
Springer, 369-412.

[53] Dominik Schuldhaus, Carolin Jakob, Constantin Zwick, Harald Koerger, and Bjoern M Eskofier. 2016. Your personal movie producer:
generating highlight videos in soccer using wearables. In Proceedings of the 2016 ACM International Symposium on Wearable Computers.
ACM, 80-83.

[54] Teddy Seyed, Alaa Azazi, Edwin Chan, Yuxi Wang, and Frank Maurer. 2015. Sod-toolkit: A toolkit for interactively prototyping and
developing multi-sensor, multi-device environments. In Proceedings of the 2015 International Conference on Interactive Tabletops &
Surfaces. ACM, 171-180.

[55] Akira Wakita and Yuki Anezaki. 2010. Intuino: an authoring tool for supporting the prototyping of organic interfaces. In Proceedings of
the 8th ACM Conference on Designing Interactive Systems. ACM, 179-188.

[56] Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen Wu, Hsin-Ruey Tsai, Rong-Hao Liang, Yi-Ping Hung, and Mike Y Chen. 2016.
CircuitStack: supporting rapid prototyping and evolution of electronic circuits. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology. ACM, 687-695.

[57] Tracy Westeyn, Helene Brashear, Amin Atrash, and Thad Starner. 2003. Georgia tech gesture toolkit: supporting experiments in gesture
recognition. In Proceedings of the 5th international conference on Multimodal interfaces. ACM, 85-92.

[58] Chi-Jui Wu, Steven Houben, and Nicolai Marquardt. 2017. Eaglesense: Tracking people and devices in interactive spaces using real-time
top-view depth-sensing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 3929-3942.

[59] Jishuo Yang and Daniel Wigdor. 2014. Panelrama: enabling easy specification of cross-device web applications. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 2783-2792.

[60] Ming Zeng, Haoxiang Gao, Tong Yu, Ole ] Mengshoel, Helge Langseth, Ian Lane, and Xiaobing Liu. 2018. Understanding and improving
recurrent networks for human activity recognition by continuous attention. In Proceedings of the 2018 ACM International Symposium on
Wearable Computers. ACM, 56—-63.

[61] Bo Zhou, Harald Koerger, Markus Wirth, Constantin Zwick, Christine Martindale, Heber Cruz, Bjoern Eskofier, and Paul Lukowicz.
2016. Smart soccer shoe: monitoring foot-ball interaction with shoe integrated textile pressure sensor matrix. In Proceedings of the 2016
ACM International Symposium on Wearable Computers. ACM, 64-71.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.


https://doi.org/10.1109/BSN.2006.10
https://doi.org/10.1145/2702123.2702487

The Wearables Development Toolkit: An Integrated Development Environment for Activity... « 134:23

A APPENDIX

This section lists the reusable components in the WDK until the date of submission of this article. The first and
second columns of the tables provide the name and a description of each component. The execution, memory and
communication costs are abbreviated as Exec, Mem and Comm and described with respect to an input of size n.

Table 4. The preprocessing components produce n 32-bit floating-point values. The o variables in the HighPassFilter and

LowPassFilter refer to these components’ order property. The algorithms with a (*) in the memory field require O(1) memory
when their computationInPlace property is set to true or O(n) additional memory otherwise.

Preprocessing Components ‘ Exec ‘ Mem

HighPassFilter Butterworth High-pass filter 13%x0%n |~
LowPassFilter Butterworth Low-pass filter 31xo0%n |~
Magnitude Vasx(x:)? + ay(x;)? + az(x;)? 4xn *
SquaredMagnitude  a,(x;)® + ay(x;)* + az(x;)?) 2%n *
Norm Jax Gl + fay ()| + faz()) 2en |*
Derivative Dj(x) = (x; — xi+1)/6 and D}/ (x) = (xi—1 — x; + Xi+1)/6° 40 % n *
s1 max(X; = Xi—1, ..., Xi = Xj—k) + Max(Xi = Xix1, s Xi = Xi+k) 40%ksn | n
2 max(x; — Xi—1, ..., X; _xi_k);cmaX(Xi — Xi4ls oo Xi — Xitk) 203%ksn | n

Table 5. The event detection components produce either none or one 32-bit floating-point value.

Event Detection Components ‘ Exec ‘ Mem

SimplePeakDetector  Threshold-based peak detector 11%n 1
MatlabPeakDetector ~Matlab’s peak detector 1787 *n | n

Table 6. The segmentation components produce s or [ + r values. The s, [, it and r variables in the Exec and Mem columns
refer to these components’ segmentSize, iterationSize, segmentSizeLe ft and segmentSizeRight properties, respectively.

Segmentation Components ‘ Exec ‘ Mem

SlidingWindow Extracts Segments of windowSize from the input Signal | (n—s)/it | s
EventSegmentation  Creates Segments around the input Events 11*n I+r
ManualSegmentation Converts event and range annotations to Segments - -
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Table 7. The time-domain feature extraction algorithms produce a single value except for the Quantile component, which
produces numQuantileParts values. The octant is defined as: Octant = 1 if x1, x2,x3 > 0 and Octant = 7 if x1,x2,x3 < 0.

Time-domain Feature Extraction Components

‘ Mem

Exec
Min Minimum value in the input Signal n 1
Max Maximum value in the input Signal n 1
Mean Average of every value in the input Signal n 1
Median Median of the values in the input Signal 15*n 1
Variance Variance of the input Signal 2%n 1
STD Standard Deviation of the values in the input Signal 2+%n 1
ZCR Zero Crossing Rate of the input Signal 5%n 1
n -\\ 3
Skewness Skewness of the input Signal: Z (xl x)) 6%n 1
ni_1 X _(;) 4
Kurtosis kurtosis of the input Signal: Z (’—) 6%n 1
o
i=1
IQR Interquartile Range of the values in the input Signal 57 % n n
AUC Area under the curve (trapezoid rule) of the input Signal: | 8 *n 1
nz_‘: Xi + Xi+1
i=1 n
n—1 |X' — X
AAV Average Absolute Variation of the input Signal: Z - 5%n 1
n
i=1
Correlation Pearson correlation coefficient of the two input Signals 3%n n
Energy Sum of squared values of the input Signal 2%n 1
n
Entropy Entropy of the input signal: Z pilog(p;) where p; are the probabil- | n? n
i=1
ity distribution values of the input Signal
n —
MAD Mean Absolute Deviation of the input Signal: Z bi =% 5%n 1
n
i=1
MaxCrossCorr Maximum of the cross correlation coefficients of two input Signals | 161 = n n
Octants Octant of each sample in the three input Signals 7#n 1
pP2pP Difference between max. and min. values of the input Signal 3%n 1
Quantile q cutpoints that separate the distribution of values in the input | 3 = n = | g
Signal log(n)
. Dy X}
RMS Root Mean Squared of the input Signal: \| —— 2%n 1
n
SMV Signal Vector Magnitude of a two-dimensional input Signal: | 4 *n 1
1 n
- Z VX + D)
i=1
SMA Sum of absolute values of a one or two-dimensional input Signal: | m * n 1
n n
Z Z |xif|
i=1 j=1
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Table 8. The frequency-domain feature extraction components output a single value except for the FFT and PowerSpectrum
which produce n/2 and n values respectively. Every frequency-domain feature extraction component receives the Signal with
FFT coefficients produced by the FFT component as input.

Frequency-domain Feature Extraction Components

‘ Mem

Exec
FFT FFT of the input Signal nxlog(n) | n
FFTDC DC component of FFT coefficients 1 1
MaxFrequency Largest Fourier coefficient n 1
PowerSpectrum Power spectrum of FFT coefficients 4%n n
n-1_-
SpectralCentroid Centroid of FFT coefficients: # 10 % n 1
i=1 Yi
SpectralEnergy Squared sum of FFT coefficients: Z 7;? 2%n 1
SpectralEntropy Entropy of the FFT coeflicients: — Z y; log 2(y;) 21%n 1
i=1
L. Vn ?:1 Xi
SpectralFlatness Flatness of the distribution of FFT coefficients: T() 68 % n 1
n Li=1 X\
SpectralSpread Variance of the distribution of FFT coefficients 11%n 1

Table 9. The classification components produce 9 bytes (a 1-byte label and an 8-byte timestamp). Their computational
performance depend strongly on their implementation.

Classification Components

LDClassifier
TreeClassifier
KNNClassifier
EnsembleClassifier
SVMClassifier

Linear Discriminant classifier
Decision tree classifier with properties: maxNumSplits

K-NN classifier with properties: nNeighbors, distanceMetric

Ensemble classifier with properties: nLearners

Support Vector Machine classifier with properties: order, boxConstraint

Table 10. The postprocessing components produce 9 bytes (a 1-byte label and an 8-byte timestamp).

Postprocessing Components

‘ Exec

‘ Mem

LabelMapper Transforms the array of labels in a ClassificationRe- | n n
sult by mapping labels in the sourceLabeling prop-
erty to labels in the targetLabeling property
LabelSlidingWindowMaxSelector Replaces every label at index labellndex in a Clas- | 1 1

sificationResult with the most frequent label in
the range [labellndex — windowSize, labellndex +
windowSize], or with the NULL-class if no label
occurs at least minimumCount times in the range

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.



134:26  « Juan Haladjian

Table 11. Utility components available in the runtime components layer.

Runtime Utility Components ‘ Exec ‘ Mem ‘ Comm

FeatureNormalizer Normalizes a FeaturesTable by subtracting each row from | 2%n | 2%n |n
the means property and dividing it by the stds property
ConstantMultiplier Multiplies an input Signal by the constant property n n n
Substraction Subtracts the second column from the first column of a two- | 2*n | n n
dimensional input Signal
AxisMerger Merges m Signals of size n into an nxm Signal 3¥xn |mxn|mx*n
AxisSelector Selects the axes columns of the provided input Signal - msn | m=n
RangeSelector Outputs a new Signal with the values in the range [rs...re] | 2xn | re — |re -
of the input Signal rs rs

Table 12. The FilesLoader and AnnotationsLoader are convenience components used during development.

File Management Components

FilesLoader Loads and parses a data file (.csv or .mat) formats.
AnnotationsLoader Loads ans parses an annotations file (.txt format)

Table 13. The labeling components are methods to label the Events and Segments produced by a recognition algorithm.

Labeling Components

EventsLabeler Labels Events as the closest event annotation under a specified tolerance
EventSegmentsLabeler Labels Segments extracted around a detected Event
RangeSegmentsLabeler Labels Segments based on range annotations

Table 14. The validation components receive a set of FeaturesTables as input and produce a ClassificationResult.

Validation Components

HoldoutValidator Trains a classifier using the trainData and tests its with the testData
LeaveOneOutCrossValidator Applies the leave-one-subject-out cross-validation technique

Table 15. Utility components available in development components layer of the repository.

Development Utility Components

FeatureExtractor Generates a FeaturesTable from an array of Segments

FeatureSelector Identifies the nFeatures most relevant features of a FeaturesTable

NoOp Outputs the input object without modification

PropertyGetter Outputs the property property of the input object

PropertySetter Sets the property property of the object in the node property to the input value
SegmentsGrouper Outputs the input Segments grouped by their class

TableRowSelector Removes every row of the input FeaturesTable with a label column not contained

in the selectedLabels property.
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