
Technische Universität München

Fakultät für Informatik

The Wearables Development Toolkit

Dr. rer. nat. Juan I. Haladjian Madrid

Habilitation

Members of the Habilitation Committee:

Univ.-Prof. Dr. Bernd Brügge
Univ.-Prof. Dr. Tobias Nipkow
Prof. Daniel Siewiorek, Ph.D

Abstract

Over the last two decades, several wearable devices have been developed with appli-
cations in the fields of health, sports, daily activity monitoring and animal welfare.
While these applications highlight their potential benefit to different user groups,
the development of wearable systems that are ultimately accepted by users remains
a challenging task. To some extent, this is because of the lack of tools specifically
designed to support their development. Integrated development environments are al-
ready available to support the development of mobile and desktop device applications.
In contrast, there is up to date no integrated development environment for wearable
devices.

This Habilitation presents the Wearables Development Toolkit, an integrated de-
velopment environment we created to facilitate the development of wearable device
applications. The Wearables Development Toolkit consists of a repository of reusable
software components and a set of tools. The reusable components facilitate the de-
velopment of activity recognition applications with wearable devices by encapsulating
functionality commonly used to develop such applications. The set tools support com-
mon tasks developers usually have to engage in when developing activity recognition
applications. These tasks include the collection and annotation of data, the analysis
of data needed to devise recognition algorithms, the implementation of recognition
algorithms and the assessment of their computational and recognition performance.

We demonstrate the ease of use of the toolkit by describing step-by-step the de-
velopment process we followed to create a smart glove able to recognize goalkeeper
training exercises. Furthermore, we provide evidence about the toolkit’s generaliz-
ability to different application domains by describing how the components available
in the toolkit are used to create two applications from different domains. The first one
recognizes activities of daily living (e.g. sitting, walking) and the second one tracks
the rehabilitation progress of patients after a hip replacement surgery. We append to
this document a list of other applications developed with the toolkit.

iii

Contents

1 Introduction 3
1.1 Research Process . 5
1.2 Outline . 5

2 Background 7
2.1 Activity Recognition . 7

2.1.1 The Activity Recognition Chain 8
2.1.2 Classification Methods . 9
2.1.3 Architectures . 10
2.1.4 Development Lifecycle . 11

2.2 Related Work . 14

3 The Wearables Development Toolkit 17
3.1 Design Goals . 17
3.2 Architecture of the WDK . 18
3.3 WDK Repository . 19

3.3.1 WDK Runtime Components . 19
3.3.2 WDK Development Components 23

3.4 WDK Tools . 26
3.4.1 Data Annotation Tool . 26
3.4.2 Data Analysis Tool . 27
3.4.3 Algorithm Development Tool 27
3.4.4 Algorithm Assessment Tool . 28

4 Evaluation 29
4.1 Step-by-step Walkthrough: Goalie Glove 29

4.1.1 Data Collection and Annotation 29
4.1.2 Data Analysis . 31
4.1.3 Algorithm Implementation . 32
4.1.4 Performance Assessment . 33

4.2 Reference Applications . 35
4.2.1 Reference Application 1: Daily Activity Monitoring 35
4.2.2 Reference Application 2: HipRApp 36

5 Conclusions and Future Work 39

v

CONTENTS

6 Publications 41
6.1 The Wearables Development Toolkit: An Integrated Development En-

vironment for Activity Recognition Applications 41
6.2 Sensor-based Detection and Classification of Soccer Goalkeeper Train-

ing Exercises . 68
6.3 Teaching wearable device development with the wearables development

toolkit . 89
6.4 Gait Analysis in Horse Sports . 92
6.5 Gait and Jump Classification in Modern Equestrian Sports 99
6.6 A Wearable Sensor System for Lameness Detection in Dairy Cattle . . 104
6.7 KneeHapp Textile: A Smart Textile System for Rehabilitation of Knee

Injuries . 120
6.8 iPig: Towards Tracking the Behavior of Free-roaming Pigs 125
6.9 Gait Anomaly Detection in Dairy Cattle 131
6.10 A Smart Textile Sleeve for Rehabilitation of Knee Injuries 140

Bibliography 145

vi

Publication Preface

This Habilitation is based on the following publications:

Publication [1]

Haladjian, J. (2019). The Wearables Development Toolkit: An Integrated Develop-
ment Environment for Activity Recognition Applications. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), 3(3)

Accepted. To be published in November 2019.

Publication [2]

Haladjian, J., Schlabbers, D., Taheri, S., Tharr, M., & Bruegge, B. (2019). Sensor-
based Detection and Classification of Soccer Goalkeeper Training Exercises. Proceed-
ings of the ACM Transactions on Internet of Things (TIoT),

Accepted. To be published in November 2019.

Publication [3]

Haladjian, J., & Bruegge, B. (2019). Teaching wearable device development with the
wearables development toolkit. CEUR Workshop Proceedings, 2308, 27–28.

Proceedings: http://ceur-ws.org/Vol-2308/

Publication [4]

©ACM 2018. Reprinted with permission.
Echterhoff, J., Haladjian, J., & Bruegge, B. (2018a). Gait Analysis in Horse

Sports. In Proceedings of the Fifth International Conference on Animal-Computer
Interaction (p. 3).

DOI: https://doi.org/10.1145/3295598.3295601

Publication [5]

©ACM 2018. Reprinted with permission.
Echterhoff, J., Haladjian, J., & Bruegge, B. (2018b). Gait and Jump Classifica-

tion in Modern Equestrian Sports. In Proceedings of the 2018 ACM International
Symposium on Wearable Computers (pp. 88–91).

DOI: https://doi.org/10.1145/3267242.3267267

1

CONTENTS

Publication [6]

Reprinted with permission.
Haladjian, J., Haug, J., Nueske, S., & Bruegge, B. (2018). A Wearable Sensor

System for Lameness Detection in Dairy Cattle. Multimodal Technologies and Inter-
action, 2(2), 27.

DOI: https://doi.org/10.3390/mti2020027

Publication [7]

©IEEE 2018. Reprinted with permission.
Haladjian, J., Bredies, K., & Bruegge, B. (2018). KneeHapp Textile: A Smart

Textile System for Rehabilitation of Knee Injuries. In Proceedings of the 15th Inter-
national Conference on Wearable and Implantable Body Sensor Networks (BSN) (pp.
9–12). IEEE.

DOI: 10.1109/BSN.2018.8329646

Publication [8]

©ACM 2017. Reprinted with permission.
Haladjian, J., Ermis, A., Hodaie, Z., & Bruegge, B. (2017). iPig: Towards Track-

ing the Behavior of Free-roaming Pigs. In Proceedings of the Fourth International
Conference on Animal-Computer Interaction (pp. 10:1--10:5). New York, NY, USA:
ACM.

DOI: https://doi.org/10.1145/3152130.3152145

Publication [9]

©ACM 2017. Reprinted with permission.
Haladjian, J., Hodaie, Z., Nueske, S., & Bruegge, B. (2017). Gait Anomaly De-

tection in Dairy Cattle. In Proceedings of the Fourth International Conference on
Animal-Computer Interaction (pp. 8:1--8:8). New York, NY, USA: ACM.

DOI: https://doi.org/10.1145/3152130.3152135

Publication [10]

©ACM 2017. Reprinted with permission.
Haladjian, J., Scheuermann, C., Bredies, K., & Bruegge, B. (2017). A Smart

Textile Sleeve for Rehabilitation of Knee Injuries. In Proceedings of the 2017 ACM
International Joint Conference on Pervasive and Ubiquitous Computing and Proceed-
ings of the 2017 ACM International Symposium on Wearable Computers (pp. 49–52).
New York, NY, USA: ACM.

DOI: https://doi.org/10.1145/3123024.3123151

2

Chapter 1

Introduction

The first computing devices were as large as an entire room, so expensive that only
large companies and universities could afford them and required human operators to
physically manipulate their mechanical plugs and switches. The miniaturization of
electronics, the mass production of electronic parts and the advances in the research
fields of pattern recognition and human-computer interaction, have given place to
smaller, cheaper and better usable computing devices than ever before.

Today, users are no longer required to actively interact with a computing de-
vice. Instead, computing devices infer information about the user and her context
autonomously. For example, today’s smartphones are already able to measure the
location of the user, count steps and recognize whether the user is walking, running
or riding a bike regardless of the user’s location and without demanding her attention.
This information can be used to adapt a user interface to the user’s needs or to help
athletes improve their skills. The ability of a computer system to retrieve information
from the environment and adapt accordingly is called context awareness.

The term context awareness was first used in 1994 by Schilit and Theimer [88] to
refer to the ability of a system to infer and make use of the location of a user to adapt
a user interface. Until the late 90s, the location of the user remained the main source
of information used by context-aware applications. In the following years, different
applications started to take advantage of other contextual information such as the
orientation of a device [30], the time [83] and the user’s emotional and mental condition
[26]. In 1999, Anind Dey extended the definition of context to: “any information
that can be used to characterize the situation of an entity” [2]. He used the term
entity to refer to the user of an application, a place or any object related to the
interaction between the user and the application. The 21st century has seen a large
number of context-aware applications developed for mobile, ubiquitous and wearable
devices. The focus of this thesis is on context-aware applications that infer information
about the user using wearable devices. In the rest of this document, we refer to
applications that leverage wearable sensor signals to extract information about the
wearer as activity recognition applications.

Activity recognition applications based on wearable sensors have been developed
for a variety of fields. In the field of medicine, multiple applications have been devel-
oped that study the gait of a patient (e.g. patients of Parkinson’s Disease [73, 15, 63])
and others that support the rehabilitation process after an injury [45, 38] or a stroke

3

CHAPTER 1. INTRODUCTION

[11]. In the sports field, a variety of applications have been developed that compute
performance parameters and give feedback to athletes during or after training to help
them improve their skills. Concrete sport types include: table tennis [18], soccer [112],
swimming [12], cricket [55] and ski jumping [33]. In the more general field of daily
activity monitoring, applications have been developed to recognize activities such as
drinking [86], eating [5, 7] and falling [21]. Furthermore, a growing interest in the
wellbeing of animals have made them an interesting target user of activity recognition
applications as well. Target animal users of activity recognition applications include
livestock (e.g. cows [44, 40, 46], pigs [42], sheep [102], goats [68]), animals that par-
ticipate in sport applications (e.g. horses [27, 28]) and domestic animals, mostly dogs
[56, 98].

While the broad variety of applications introduced by the research community has
already highlighted their potential benefits to end-users, developing activity recogni-
tion applications with wearables that are ultimately accepted by end users is still a
difficult task. The development of such applications requires specialized knowledge in
multiple disciplines, including hardware design, firmware development and data sci-
ence. Furthermore, activity recognition applications are bound to the computational
constraints of the wearable device (memory, processing capability), as well as to ad-
ditional requirements set by the end user (small, comfortable, accurate recognition,
long-lasting battery). Design decisions span across hardware (e.g. CPU, memory,
sensors), software (e.g. sensor ranges, recognition algorithms) and hardware-software
mapping (e.g. doing computations on the wearable vs delegating them to a mobile
device). As it is often impossible to find a design that satisfies every requirement,
different designs usually have to be assessed and compared before a decision for a
particular design can be made. Unfortunately, the suitability of a particular design
can rarely be assessed in advance, without collecting data, annotating it, developing
a recognition algorithm and assessing its recognition performance and computational
requirements.

Many activity recognition applications rely on similar functionality such as signal
processing methods and machine learning classifiers and are developed with similar
development processes. The typical development lifecycle of an activity recognition
application involves the collection and annotation of data, the implementation of one
or more recognition algorithms and the assessment of the performance of the algo-
rithms. Nevertheless, activity recognition applications with wearable devices are still
being developed with general-purpose programming languages, tools and frameworks
such as Matlab, Python, R, C++ and WEKA [47] that do not directly support the
development lifecycle of activity recognition applications. As these technologies were
not originally designed for activity recognition applications, their entrance barrier to
this kind of applications is still high.

In this Habilitation, we present the Wearables Development Toolkit (WDK), an
Integrated Development Environment (IDE) specifically designed for activity recogni-
tion applications with wearables. The WDK consists of a set of reusable components
with common functionality used across activity recognition applications. It also offers
four tools to: 1) annotate sensor data, 2) study the data and the effects of different
signal processing methods on it, 3) develop activity recognition algorithms by reusing
the set of reusable components within a textual and visual programming interface

4

1.1. RESEARCH PROCESS

and 4) assess their recognition and computational performance. We present the de-
sign of the WDK, its different tools and demonstrate its usage with three different
demonstrations from different domains.

1.1 Research Process

We developed the WDK following a formative research process. Formative research
processes iteratively assess a project or method in order to guide its development [92].
In contrast, summative processes evaluate the performance of a method or project
after their implementation or execution. A formative research process enabled us to
iteratively assess the IDE and refine its requirements accordingly. This was necessary
because the requirements for an IDE for wearable devices were not defined when we
started the development of the WDK.

We started the development of the WDK by identifying abstractions based on
our experience in the field of wearable computing and activity recognition. We also
performed a systematic literature review to validate and extend our set of abstractions.
Next, we refined and extended these abstractions by iteratively developing a family
of wearable device applications. The development of these applications enabled us to
refine the existing abstractions and to identify new requirements for the IDE. Since
2016, we have developed more than five different wearable device applications with
the WDK. To make the WDK available for other developers to create their own
applications, the WDK has been made open source under the MIT license1.

1.2 Outline

This is a publication-based Habilitation. It contains a summary of our contribution
and a copy of ten conference and journal publications. The summary includes an
overview of the field of activity recognition with wearable sensors (Chapter 2), a
detailed description of the WDK (Chapter 3) and an evaluation demonstrating how
different applications are created with the WDK (Chapter 4). In addition, Chapter 5
discusses future research directions to continue our work. In Chapter 6, we include a
reprint of the publications this Habilitation is based on.

Chapter 2 provides an overview of the field of activity recognition with wearable
sensors. Activity recognition applications recognize user activities using sensor data.
We describe what kind of sensors have been used in previous applications and how
patterns can be extracted from sensor data by performing a sequence of computations
known as the Activity Recognition Chain. We discuss in detail common computations
done, most of which are available as reusable components in the WDK. The chapter
also describes the typical development process of an activity recognition application,
which is supported by the WDK. Finally, we compare the WDK to previously created

1https://github.com/avenix/WDK

5

CHAPTER 1. INTRODUCTION

toolkits that ease the development of ubiquitous computing applications.
Chapter 3 describes the WDK’s design, including its design goals, architecture

and object design. An important goal of the WDK was to lower the entrance barrier
to the development of activity recognition applications with wearables. To this end,
the toolkit offers a set of high-level reusable components that have been refined based
on the several applications we developed with the WDK. We also present how we
organized the reusable components in the WDK in a repository architecture. The
repository of reusable components is designed as layered architecture with two main
layers. The Runtime Components layer contains reusable components that are used
by activity recognition applications at runtime and the Development Components
layer contains functionality used during development (e.g. methods to assess the
performance of an algorithm). Finally, this chapter presents the different tools offered
by the WDK. These tools facilitate common development tasks such as the annotation
of time series together with a reference video.

After having presented the WDK, Chapter 4 demonstrates its usage with three
different applications. With this evaluation, we pursue two goals. First, we demon-
strate how easily activity recognition applications can be developed with the WDK.
To this end, we describe step-by-step how we used the WDK to develop an applica-
tion that recognizes goalkeeper training exercises using an inertial sensor inserted in a
goalkeeper’s glove. Second, we demonstrate the versatility of the WDK to support the
development of two activity recognition algorithms from different domains. In par-
ticular, we chose to re-create an activity recognition algorithm proposed by Bao and
Intille [14] that recognizes daily activities such as walking, jogging and climbing up
stairs and another one that tracks the rehabilitation exercises performed by patients
after a hip replacement surgery [41].

Chapter 5 summarizes our contribution and discusses future research directions.
Our main contribution is an integrated development environment including a reposi-
tory of reusable components and a set of tools to support the development of activity
recognition applications with wearables. The WDK facilitates the development of
manually-crafted activity recognition algorithms, but does not support the develop-
ment of applications that rely on these algorithms. Future work could investigate
how to automatize the development process to enable the creation of recognition al-
gorithms automatically based on an annotated data set and identify domain-specific
abstractions to ease the development of applications that rely on recognition algo-
rithms.

Chapter 6 provides a summary and copy of the publications this Habilitation
is based on. For each publication, we summarize its main research contribution,
describe how it relates to the WDK and mention how the author of this Habilitation
contributed to them. Publications 1 [36] and 3 [39] describe the WDK and every
other publication we present describes an activity recognition application developed
with the WDK.

6

Chapter 2

Background

This chapter provides an overview of the field of activity recognition. Section 2.1
discusses the state of the art in activity recognition, including the terminology used
in the field, common recognition methods and concrete applications. It also describes
the typical development lifecycle of an activity recognition application. Section 2.2
provides an overview of previous work to facilitate the development of physical devices
and discusses how these relate to our toolkit.

2.1 Activity Recognition

Activity recognition is often referred to as Human Activity Recognition, abbreviated
as “HAR”. In this document, we avoid the term human because the target user of an
activity recognition application might be an animal [44, 102, 56, 98, 42]. Activities
include (but are not limited to) hand gestures [31, 8, 71], activities of daily living
(e.g. walking, sitting, jogging) [14, 95, 81], specific motions in sport applications
(e.g. serves in table-tennis [18], shots and passes in soccer [89] or batting shots in
cricket [55]) and abnormal conditions (e.g. falls [1, 21]). Applications developed so
far have used a variety of sensors, including inertial [44, 28, 96], pressure [112, 71],
muscle electrical activity [6, 66, 76], electrocardiogram (ECG) [54, 69] sensors and
microphones [104, 61, 109]. Besides recognizing activities, applications often need to
compute quality metrics about the recognized activities, such as the stability while
walking [41, 73], the “smoothness” of a turn performed by a horse in dressage [96]
or the velocity and jump length in a ski jumping application [33]. Usually, activities
have to be recognized before quality metrics can be extracted from them. While
some applications consider every activity performed by the wearer as relevant to the
application [14, 28, 95], many applications need to detect sporadic events signaling
relevant activities first [44, 18, 55, 89, 24]. Accurately detecting the relevant events
in a stream of sensor data while avoiding the detection of irrelevant ones can be
challenging, depending on the sparsity of the relevant activities. Most applications
require executing activity recognition algorithms in real time, while others perform
the recognition offline, after the entire data is available.

7

CHAPTER 2. BACKGROUND

2.1.1 The Activity Recognition Chain

Data
Acquisi t ion

Preprocessing Segmentation
Feature

Extraction
Classif ication

Raw data
Preprocessed

data
Segment

Feature
vector

Label

Powered By�Visual Paradigm Community Edition

Figure 2.1: UML activity diagram shows the typical sequence of computations per-
formed in activity recognition applications.

Most activity recognition applications process sensor signals in a sequence of stages
(represented as activities in Figure 2.1). This sequence is often referred to as the Activ-
ity Recognition Chain, often abbreviated as ARC and is also referred to as manually-
crafted recognition chain. In the first stage of the recognition chain, the sensors are
read and the signals produced by them are stored in memory. Each signal consists
of several samples and the set of signals acquired from the different sensors before
performing any processing is called raw data.

A Preprocessing stage is often applied to prepare the raw data for feature extrac-
tion [19]. Common goals of the preprocessing stage are to eliminate noise in the
acquired signal, to synchronize sensor signals in case they were acquired by different
sensors and possibly at different sampling frequencies and to compute new signals
by aggregating raw signals. Low-pass filters are a common preprocessing technique
used to eliminate high-frequency noise in a signal produced by an accelerometer sen-
sor [24, 96, 41]. Furthermore, several activity recognition applications aggregate raw
accelerometer, gyroscope and possibly magnetometer signals and compute the linear
acceleration, gravity vector and quaternion using sensor fusion techniques such as a
Kalman or Complementary filter. In fact, these computations are so common, that
several commercial Inertial Measurement Units already compute these values directly
on the device.

The goal of the Segmentation stage is to split the preprocessed data into segments,
from which information about the underlying activity can be inferred. In order to
enable the next stages to accurately infer information from a segment, the segment
should ideally contain samples corresponding to a single activity. Applications that
process periodic or static signals can usually rely on a sliding window to create seg-
ments [14, 95]. In contrast, applications that need to detect the occurrence of sporadic
events first, usually create segments around the detected events [18, 44, 43, 89, 96].

In the Feature Extraction stage, a set of values are computed from each segment
and grouped under a so-called feature vector. The goal of the Feature Extraction is
to produce feature vectors that are similar among instances of the same activity and
different among instances of different activities. While most applications rely on a set
of common feature extraction algorithms, tailoring feature extraction algorithms to a
particular application can lead to improved recognition performance. Feature extrac-

8

2.1. ACTIVITY RECOGNITION

tion algorithms can be categorized into those that operate on the time-domain and
those that operate on the frequency-domain. Common time-domain feature extrac-
tion algorithms include statistical measurements such as the mean, median, variance,
minimum, maximum and other mathematical functions such as the zero-crossing rate
and the difference between the maximum and minimum values of a signal. Frequency-
domain feature extraction algorithms include those that rely on the coefficients of a
Fourier transform (e.g. largest Fourier coefficient) and those that rely on the coeffi-
cients of a Wavelet transform (e.g. sum of Wavelet coefficients).

Finally, a classifier is used to determine what activity took place based on a fea-
ture vector and produces a label as result. Due to the large number of classification
methods used in the literature, we dedicate the entire next section to discussing them.

2.1.2 Classification Methods

Activity recognition borrows classification methods from the more general field of
pattern recognition. Pattern recognition methods have been categorized as: template
methods, statistical methods, syntactic methods and neural networks [53]. Template
methods recognize patterns by comparing the signals to templates using a similarity
measure. For example, to recognize strides in the signal produced by an inertial
sensor, data segments can be compared against a stride template and discarded if
their similarity falls below a threshold [15]. Statistical methods represent patterns as
points in an n-dimensional space. Ideally, the points corresponding to the pattern
to be recognized are clustered together and lie as far away as possible from points
that do not correspond to the pattern. Then, statistical methods learn how to “draw
the lines” (i.e. identify the optimal boundaries) to separate the data points - this
can usually be done automatically based on the data. Syntactic methods represent
patterns hierarchically: each pattern is composed of simpler patterns, which are in
turn composed of simpler patterns. The simplest form of a pattern is called a primitive.
To recognize patterns, syntactic methods apply a set of rules to derive patterns from
the primitives. For example, an electrocardiogram (ECG) signal can be represented
with vertical and diagonal line primitives, which can be aggregated into more complex
representations by applying a set of rules [97]. These complex representations can be
used to determine whether an ECG signal corresponds to a healthy or unhealthy
individual. Neural networks are weighted directed graphs where the nodes and edges
are analogous to neurons and connections between neurons in a human brain. An
important characteristic of neural networks is that they have the ability to learn
complex relationships between inputs and outputs by adapting their weights.

Most activity recognition applications developed so far are based on statistical
methods. Commonly used statistical methods include machine learning classifiers such
as Support Vector Machines [41, 43, 82, 20, 4], k-Nearest Neighbors [94, 24, 10, 77]
and decision trees [14, 65, 17]. For signals that exhibit a temporal dependency, prob-
abilistic methods (mostly Hidden Markov Models) have been studied in different ap-
plications [64, 25, 60, 87]. Template methods have been used mostly to recognize hand
gestures [3, 49, 99, 100] and in applications that rely in short activities with temporal

9

CHAPTER 2. BACKGROUND

dependencies (e.g. gait strides [15]). A popular template method across activity recog-
nition applications is Dynamic Time Warping. In general, machine learning classifiers
have achieved higher recognition performances than other statistical and template
methods [19]. Syntactic methods are less common and have been used mostly in pat-
tern recognition applications based on different kind of signals than those typically
produced by wearable devices, such as video [52] and image data [16]. In the field of
activity recognition with wearable sensors, syntactic methods have been applied for
detecting spikes and classifying states in EEG [101] and ECG [97] signals.

Until the last decade, only a few activity recognition applications relied on neural
networks, mostly feedforward neural networks [93, 103, 29]. Motivated by the success
of deep neural networks in other pattern recognition applications, different research
groups started studying their application to activity recognition with wearables. Deep
neural networks studied so far include Convolutional Neural Networks (CNN) [23, 35,
111, 48, 59], Recurrent Neural Networks (RNN) [75, 48, 72] and Long-Short Term
Memory (LSTM) [110, 75, 48, 72, 59]. Deep neural networks are of high interest
to the research community for two main reasons. First, they have been shown to
surpass manually-crafted recognition chains in terms of recognition performance in
several applications. Second, deep neural networks promise to free developers from
having to devise a chain of computations manually, which requires experience in signal
processing, feature engineering and application domain knowledge.

While deep neural networks have become the state of the art recognition method in
other research fields (e.g. computer vision and natural language processing), at least
two limitations makes them impractical for most activity recognition applications
with wearable devices. First, deep neural networks usually achieve high recognition
performance only when fed with larger amounts of data than usually available when
developing an application for a wearable device. In contrast to other applications that
process a single kind of signal (e.g. image, video, text), wearable device applications
vary in the kind of signals they process. As different wearable systems are based
on different sensors, which might be configured differently (e.g different ranges or
sampling frequencies) or placed at different positions of the body, the data collected for
a particular application can rarely be reused in other applications. Second, deep neural
networks are usually more computationally complex than other pattern recognition
methods commonly used in activity recognition with wearables. To cope with the
added computational complexity, a wearable device might need to host a higher-
end CPU, more memory and a larger battery to remain functional for as long as
required by the application. However, a higher recognition performance might not
always justify the need for bulkier, heavier and more expensive wearable device. As
a consequence, most activity recognition applications with wearable devices still rely
on manually-crafted recognition chains, which the WDK is based on.

2.1.3 Architectures

In addition to wearable devices, activity recognition systems might involve mobile
devices and servers in the cloud. The stages in the activity recognition chain can be

10

2.1. ACTIVITY RECOGNITION

mapped to the aforementioned devices in different ways. Siewiorek et al. [91] defined
three common architectures for activity recognition systems: dynamic, low-bandwidth
and centralized aggregation architectures. The dynamic architecture maps every stage
of the activity recognition chain to the wearable device, which transmits only the
results of the recognition to external devices. Among the different architectures, this
architecture usually leads to the lowest data transmission rates between the wearable
and external devices. As transmitting data wirelessly outside of a wearable device
is usually associated with high energy costs, this architecture usually also leads to
the lowest energy consumption rates among the different architectures. Another ad-
vantage of this approach is that it does not require external devices (e.g. a mobile
device) to be at a close range to receive data from the wearable device. This can be
convenient in different applications for usability reasons (e.g. a swimming tracker, or
a tracker for free-roaming animals). Two disadvantages of this architecture is that
the performance of the recognition algorithm might be limited by the computational
resources available in the wearable device and that both, the raw data and feature
vectors are discarded and hence, not available for further data analysis purposes.

The low bandwidth architecture performs every stage in the activity recognition
chain until the Feature Extraction in the wearable device and transmits feature vectors
to external devices. This architecture usually results in higher data transmission rates
than the dynamic architecture. However, as this architecture makes the feature vectors
available outside of the wearable device, it enables the computation of further metrics
from the feature vectors, which might be relevant to application users (e.g. the energy
of a tennis serve). The feature vectors can also be used to improve the performance
of the recognition algorithms (e.g. by means of online machine learning).

The centralized aggregation architecture transmits the raw data outside of the
wearable device. Depending on the sampling frequency of the different signals and
amount of signals to be transmitted, systems designed based on this architecture might
suffer from high energy consumption rates and possible loss of data. On the other
hand, this architecture enables more complex data processing tasks by delegating the
entire algorithm execution to more computationally powerful devices. An additional
advantage of this architecture is that the recognition algorithm might require less
effort to develop, as it does not have to be optimized for execution on an embedded
device with limited computational resources.

2.1.4 Development Lifecycle

Figure 2.2 illustrates the development process of an activity recognition application.
The development of an activity recognition application consists of several tasks. De-
velopers usually start developing an activity recognition application by collecting and
annotating data. The annotation is done to indicate what activity took place at each
moment in time. Annotations might comprise a start and an end timestamp, indi-
cating the occurrence of an activity with a duration in time, or a single timestamp
corresponding to a sudden event. The annotation of data can be a cumbersome and
time-consuming task if it requires a human to annotate the data manually [18, 27, 32].

11

CHAPTER 2. BACKGROUND

However, some applications can use external information as annotations. For example,
an application that recognizes lame cows from non-lame cows can rely on a data set
that uses the cow’s health condition as a reference [43, 44]. When the data has to be
annotated manually, the annotations might be performed during the data collection,
or after it. Annotating data after its collection enables a more precise determination of
the timestamps and is commonly done using video as a reference. The annotated data
constitutes a ground truth, which is used during the rest of the development lifecycle
to devise, develop and assess the performance of activity recognition algorithms.

Figure 2.2: Development lifecycle of an activity recognition application.

During the Analysis task, developers study the data and come up with possible
methods to process it. While the data analysis is mainly based on experience and
intuition, developers can rely on different strategies for this task. For example, to
devise recognition algorithms that effectively discriminate between different activities,
developers can compare (e.g. plot) the signals corresponding to each activity. This
comparison can then be used to identify properties of the signals that are similar within
an activity and different among activities. To gain a better understanding about the
discriminative power of a particular property, developers can compute its statistical
distribution (e.g. mean, variance, histogram) for each activity. The ideal property
has disjoint distributions of values among activities. In addition, developers might
find it convenient to study data plots together with reference videos to understand
how different parts of the signals relate to user activities, or how user activities are
represented in the signals.

Once developers have decided for a recognition algorithm, they implement it. As
many activity recognition applications rely on signal processing, statistical methods
and machine learning algorithms, commonly used development languages and tools in-
clude those designed for such tasks (e.g. Matlab and R), and those that offer external

12

2.1. ACTIVITY RECOGNITION

libraries for such tasks (e.g. Python and C++). Most of these programming languages
are interpreted, which usually makes the implementation of algorithms faster, at the
cost of computational performance. For this reason, recognition algorithms imple-
mented and tested in a development environment often have to be re-implemented on
the target platform and optimized for execution on the target device.

The Assessment of a recognition algorithm is done to quantify its performance and
determine whether it fulfills the requirements of the application. The recognition per-
formance of an algorithm is quantified with different metrics, including the accuracy
(i.e. percentage of correctly recognized relevant and non-relevant activities), precision
(i.e. percentage of actually relevant activities among those predicted as relevant),
recall (i.e. percentage of relevant activities recognized as relevant) and F1-score (har-
monic mean of the precision and recall metrics). Developers might find the confusion
matrix useful to gain further insight into which activities can be accurately recognized
and which ones can’t. Furthermore, a frame-by-frame comparison between the raw
data and the recognition results can help developers understand the specific reason
why an activity is poorly recognized. Recognition algorithms are usually trained with
data to recognize activities. Since assessing the performance of an algorithm with the
same data used for training it might bias the assessment results, algorithms are usu-
ally assessed with a different subset of the data than the one used during training. We
call the different ways to train and assess the performance of a recognition algorithm
validation. A common validation strategy is to exclude a part of the data set from
training and use it to study the performance of a trained recognition algorithm, which
is known as hold-out validation. A disadvantage of this method is that a fraction of
the data cannot be used for training, which might lead to lower recognition perfor-
mances if a machine learning classifier is not able to infer its optimal parameters based
on the smaller amount of data used for training. As the data sets used in activity
recognition applications tend to be small, a more common validation strategy is the
cross-validation. Cross-validation, validates a recognition algorithm in a series of iter-
ations. In each iteration, a different fraction of the data - a so-called fold - is excluded
from training and used to assess the performance of the algorithm. The recognition
performance of an algorithm is then determined by averaging the performance results
of every fold. A particular variation of the cross-validation used in several activity
recognition applications is the leave-one-subject-out cross-validation, which uses the
data collected from different people as folds. Besides the recognition performance of
an algorithm, developers are usually interested in its computational performance. The
computational performance of an algorithm determines the requirements of the target
hardware where the algorithm can be executed and enables developers to decide for
a system architecture. Developers are typically interested in the amount of memory
required to execute an algorithm, the time required by the wearable device to per-
form a computation, the energy consumption of the wearable device and the amount
of data that has to be transmitted from and to the wearable device.

The aforementioned tasks can rarely be performed sequentially. Instead, most
activity recognition applications are developed iteratively. One reason for it is that
the requirements for an application might not be fully understood initially. Often,
developers need to explore what activities can be recognized reliably before it can be
decided what activities an application should recognize. Even when the requirements

13

CHAPTER 2. BACKGROUND

are well understood, it is rarely known upfront what design will satisfy them. Design
decisions to be made include how much data should a machine learning classifier
rely on, how the data should be annotated and what recognition methods should be
used. Often, how much data should be collected is not known before assessing the
performance of an algorithm, because a low recognition performance might make it
necessary to collect additional data. The annotation protocol might also change if
newly collected data contains activities that were not observed previously. Another
reason why change might have to be introduced to the annotation protocol is to fix
inconsistencies in annotations done by different individuals. Inconsistent annotations
occur often when the activities to be recognized blur into each other without a clear
transition. For example, the boundary between walking and sitting might be unclear
in the signal produced by an inertial sensor when a person sits down on a chair
after walking towards it. Refining the annotations of one or two activities might fix
frequent misclassifications between two activities. Finally, developers usually decide
for a particular recognition algorithm after several iterations where they implement,
assess the performance of and optimize different algorithms.

2.2 Related Work

Several toolkits and development environments have been developed with the goal
to lower the entrance barrier and reduce the time needed to create interactive physi-
cal devices and user interfaces distributed among multiple devices. A comprehensive
overview of previously developed toolkits and evaluation methods for toolkits is avail-
able in [58]. The existing toolkits can be grouped based on the kind of application
they support:

• Toolkits to modify physical objects and add interactive behaviors to them.
These toolkits usually scan physical objects with 3D cameras or using mobile
devices, modify their physical structure with computer-aided design functional-
ity offered within the toolkits and print them using 3D printers. An important
feature offered by these toolkits is the ability to facilitate the integration of elec-
tronic components into the objects. Toolkits under this category include: Pineal
[57], Retrofab [79], Sauron [84], Makers Marks [85], Modkit [67] and WorldKit
[107].

• Toolkits that support the development of smart and interactive physical envi-
ronments. The applications created by these toolkits usually enable the interac-
tion between a human and a smart room. These applications usually recognize
human activities using wearable and non-wearable devices and project visual
output into walls. Toolkits that fall under this category include: EagleSense
[106], Physikit [50] and the Sod-toolkit [90].

• Toolkits to create applications distributed across multiple wearable and non-
wearable devices. These applications usually have as a goal to enable the inter-
action between different devices while avoiding the development of data trans-

14

2.2. RELATED WORK

mission and synchronization functionality. Toolkits under this category include:
XDStudio [70], Weave [22], WatchConnect [51] and Panelrama [108].

• Toolkits that support the development of applications using specific hardware
technologies. For example, the Interactex toolkit enables the development of
applications that rely on smart textiles [37]. PaperPulse facilitates the proto-
typing of applications where conductive ink is used to interconnect electronic
parts on paper [80]. PaperPixels is a set of components and design tool to cre-
ate paper-based displays [74]. OpenCapSense offers hardware components and
a software framework to facilitate the development of applications that rely on
capacitive sensors [34].

In this Habilitation, we present a toolkit to facilitate the development of other kind of
applications than the ones targeted by the previously mentioned toolkits. In particu-
lar, we present a development environment for activity recognition applications with
wearable devices.

Several toolkits were created that support the development of applications that
recognize user gestures, such as Exemplar [49], MAGIC [9], GART [62] and GT 2k
[105]. These toolkits are similar to the WDK in that they facilitate the development of
applications that recognize patterns in the signals produced by different sensors. How-
ever, they do so with specific recognition methods rather than enabling developers to
study different ones. Exemplar and MAGIC rely on Dynamic Time Warping whereas
GART and the GT 2k use a Hidden Markov Model (HMM). However, developers of
activity recognition applications usually need to assess several recognition algorithms
before they are able to decide for one of them. The WDK offers a diverse set of sig-
nal processing and machine learning methods commonly used in activity recognition
applications, together with tools to help developers determine which method better
suits the requirements of a particular application.

The CRN Toolbox [13] and the more recent Gesture Recognition Toolkit (GRT)
developed by Nick Gillian [31] are perhaps the toolkits that share most similarity
with the WDK. In contrast to the previously mentioned toolkits, the CRN and GRT
toolkits offer a wide variety of recognition methods. While these toolkits ease the
implementation (i.e. programming) and assessment of activity recognition algorithms,
they do not support other equally important tasks in the development lifecycle of
activity recognition applications. This is an issue because developers rarely know
upfront what algorithm to implement without engaging in the iterative process we
described in Section 2.1.4. In contrast to these tools, the WDK supports the entire
development process of an activity recognition application.

15

CHAPTER 2. BACKGROUND

16

Chapter 3

The Wearables Development Toolkit

This chapter presents the Wearables Development Toolkit (WDK) and discusses how
we designed it. We start by describing the goals that drove the decisions we made
during its design in Section 3.1. In Section 3.2, we present the different subsystems of
the WDK and justify why we decided to organize them in a repository architectural
style with Matlab as underlying development environment. Section 3.3 presents the
WDK’s object design including every reusable component used at runtime and the
functionality used to develop activity recognition algorithms. Finally, we describe the
different tools offered by the WDK in Section 3.4.

3.1 Design Goals

The WDK was designed based on four main design goals:
Low entrance barrier. The development of activity recognition applications

with wearable devices has a high entrance barrier, as it requires knowledge in multiple
disciplines including data science, electrical engineering, computer science and human-
computer interaction. One of the main goals of the WDK is to lower the entrance
barrier to activity recognition application development with high-level interfaces that
hide implementation details.

Versatility. Activity recognition applications with wearable sensors can target
different user groups, including patients, athletes and animals. Despite the differences
across domains, most of these applications rely on similar recognition methods, as dis-
cussed in Section 2.1.2. An important goal of the WDK was to make these recognition
methods available to application developers to enable the development of applications
for different domains.

Extensibility. Even if the WDK offered a set of recognition methods common
across different domains, application developers are likely to need to extend this func-
tionality to fulfill the requirements of their particular applications. For example, many
applications rely on custom-tailored feature extraction algorithms [96, 78]. For this
reason, a goal in the design of the WDK was to make the set of reusable functionality
in the WDK extensible by developers with little effort.

17

CHAPTER 3. THE WEARABLES DEVELOPMENT TOOLKIT

Performance. Assessing the performance of a recognition algorithm can lead
to computationally intensive tasks, specially when the recognition relies on machine
learning classifiers that have to be trained with large data sets. To address this issue,
we designed the WDK to enable developers to assess the performance of different
recognition algorithms quickly.

3.2 Architecture of the WDK

The architecture of the WDK is shown in Figure 3.1. The WDK is based on a repos-
itory architectural style. The repository consists of two sets of reusable components:
the Runtime Components and the Development Components which are organized in
a layered architecture. The Runtime Components contain functionality used by an
activity recognition application at runtime. An example of a runtime component is an
algorithm that applies a low-pass filter to a sensor signal. The Development Compo-
nents contain functionality commonly used to develop activity recognition algorithms,
such as functionality to load a data set and to evaluate recognition algorithm using
cross-validation. The applications running on the wearable devices rely on the Run-
time Components to execute recognition algorithms. In addition, the WDK offers
four tools to create, make changes to, simulate and assess the performance of activity
recognition algorithms using the WDK repository.

Dr. Juan Haladjian - A Development Platform for Wearable Devices 3

Matlab

Runtime Components

Event
 Detection

Preprocessing

Classification
Feature

 Extraction

Segmentation
Postprocessing

Development Components

Labeling Validation

File
 Management

Assessment
<<tool>>

Development
<<tool>>

Analysis
<<tool>>

Annotation
<<tool>>

Wearable App 2
<<application>>

Wearable App 1
<<application>>

Wearable App 3
<<application>>

Development
Utilities

Runtime
 Utilities

Repository
WDK

Figure 3.1: Software architecture of the WDK based on a repository organized in
three layers.

The main design goal that drove our decision for a repository architecture was
the Extensibility goal. The repository architecture decouples the reusable components
from the tools, enabling the repository to be reused independently of the tools and the
tools to be extended without changes to the repository. More importantly, decoupling
the Runtime Components from the rest of the toolkit enables them to be reused within
activity recognition applications running on wearable devices.

The repository itself is based on a layered architectural style with Matlab in its
lowest layer. The decision to base the WDK on Matlab was mainly driven by the

18

3.3. WDK REPOSITORY

Low entrance barrier goal. Matlab facilitates data analysis tasks with a broad set
of functionality and native language semantics to perform arithmetic, statistical and
signal processing operations with multi-dimensional arrays of data. This functionality
can be used in combination with the set of reusable components in the WDK to
manipulate and process data. An alternative to Matlab would have been Python in
combination with third-party libraries such as Matplotlib, SciPy and NumPy. While
we think that both languages would have been suitable alternatives, we ultimately
decided for Matlab because of its proven track of usage among non-software engineers.

3.3 WDK Repository

In this section, we describe in detail the object design of the WDK’s repository.
We divided this section into the two layers of the repository: the WDK Runtime
Components and the WDK Development Components. A full list of the reusable
components in the WDK is available in our article [36].

3.3.1 WDK Runtime Components

The WDK Runtime Components contain functionality commonly used in the different
stages of the activity recognition chain. The functionality available for reuse in the
WDK is encapsulated in subclasses of the Algorithm class. Analogously, every data
type processed by an Algorithm is encapsulated in subclasses of the abstract Data
class. Application developers typically create recognition algorithms by instantiating
Algorithm subclasses and tailoring their properties. New algorithms can be added
to the WDK by extending the Algorithm class and overriding its execute() method.
Figure 3.2 shows the subclasses of the Algorithm and Data classes.

+execute(data)

A lgor i thm Data

-nRows
-nColumns
-data

Signal

-sampleIdx
-value

Event

-startSampleIdx
-endSampleIdx
-data

Segment

-value

Feature Feature
Vector -value

Label

+execute(data)

Preprocessing
Algor i thm +execute(data)

Peak Detector

+execute(data)

Segmentation
Algor i thm

+execute(data)

Feature
Extractor +execute(data)

Classif ier

*

*

* *

*

processes

successors

Powered By�Visual Paradigm Community Edition

Figure 3.2: The Algorithm and Data classes are the superclasses of every other class
in the WDK’s repository.

19

CHAPTER 3. THE WEARABLES DEVELOPMENT TOOLKIT

A Signal is a two-dimensional matrix of data where the rows correspond to the time
dimension and the columns correspond to different sensors. Signals are loaded from
files and processed by Preprocessing Algorithms. An Event represents a particular
sample in a signal and contains the sample’s index in the Signal and the value of the
sample. Events are produced by event detection algorithms (i.e. subclasses of Peak
Detector). A Segment contains the data produced by a segmentation algorithm, as
well as the start and end indices of the segment with respect to the Signal from which
the segment was extracted. The data attribute in a Segment is a two-dimensional
matrix of floating point values. A Feature is a value that describes the data in a
Segment. An example of a Feature is the mean of the values in a Segment. Features are
produced by subclasses of the Feature Extractor. A Feature Vector is an aggregation
of instances of the Feature class, which are used as input to a Classifier. Labels
encapsulate the values produced by a Classifier in an 8-bit variable.

Preprocessing

The reusable objects available in the WDK to support the preprocessing stage are
shown in Figure 3.3. A Preprocessing Algorithm processes signals and produces an-
other signal as output. If the inPlaceComputation property of a Preprocessing Al-
gorithm is set to true, it’s execute method overrides the values in the input signal
and outputs the input signal. Otherwise, a Preprocessing Algorithm creates and out-
puts a new signal. Most Preprocessing Algorithms receive a one-dimensional signal
as input, except for the Magnitude, MagnitudeSquared and Norm, which require a
three-dimensional signal as input.

-order
-cutof f

+execute(data)

Fi l ter

+execute(data)

LowPassFilter

+execute(data)

HighPassFilter

-order
-delta

+execute(data)

Derivative

+execute(data)

Magnitude

+execute(data)

MagnitudeSquared

+execute(data)

Norm

-samplingInterval

+execute(data)

Resampler

-inPlaceComputation

+execute(data)

Preprocessing
Algor i thm -nRows

-nColumns
-data

Signal

1 *

processes

Powered By�Visual Paradigm Community Edition

Figure 3.3: Reusable signal processing algorithms available in the WDK.

Event Detection

Some activity recognition applications need to detect the occurrence of sporadic events
that are usually associated with high energies of the signals acquired by the sensors.
Many activity recognition algorithms take advantage of this fact by using peak de-
tection algorithms to detect the high-intensity events. The WDK provides two peak

20

3.3. WDK REPOSITORY

detection algorithms: the Matlab Peak Detector and the Simple Peak Detector. The
Matlab Peak Detector encapsulates Matlab’s functionality to detect peaks and the
Simple Peak Detector is a greedy peak detection algorithm we adapted from [18].
Both peak detection classes inherit from the generic Peak Detector class, as illus-
trated in Figure 3.4. A Peak Detector takes a Signal as input and produces an Event
as output.

+execute(data)

Matlab Peak
Detector

+execute(data)

Simple Peak
Detector

-minPeakHeight
-minPeakDistance

+execute(data)

Peak Detector

-sampleIdx
-value

Event
-nRows
-nColumns
-data

Signal

1
1

* *

processes creates

Powered By�Visual Paradigm Community Edition

Figure 3.4: Reusable objects for event detection available in the WDK.

Segmentation

Figure 3.5 shows the classes that can be reused to segment a signal. A Segmen-
tation Algorithm defines the interface for a class that creates segments from an
input signal. The two subclasses of the Segmentation Algorithm used at runtime
are the Event Segmentation and the Sliding Window Segmentation. The Event
Segmentation creates segments around detected events in the rage: [eventIdx −
segmentSizeLeft, eventIdx+segmentSizeRight] where eventIdx is the sample index
of the detected event in the input signal and segmentSizeLeft and segmentSizeRight
indicate the amount of samples around the detected event to include in the generated
segment. SegmentSizeLeft and segmentSizeRight are attributes of the Event Segmen-
tation class that can be configured by developers.

-segmentSizeLeft
-segmentSizeRight

+execute(data)

Event
Segmentation

-windowSize
-iterationSize

+execute(data)

Sliding Window
Segmentation

+execute(data)

Segmentation
Algor i thm -startSample

-endSample
-data

Segment

-sample
-value

Event

-nRows
-nColumns
-data

Signal

-includeEvents
-includeRanges

+execute(data)

Manual
Segmentation

1*
1 *

processes creates

Powered By�Visual Paradigm Community Edition

Figure 3.5: Segmentation strategies available in the WDK.

The Sliding Window Segmentation swipes through the entire input signal at in-
tervals of iterationSize and generates a segment of size windowSize in each iteration.

21

CHAPTER 3. THE WEARABLES DEVELOPMENT TOOLKIT

If the value of iterationSize is a smaller than the windowSize, the generated segments
overlap (i.e. the samples at the end of the segment produced in an iteration are
repeated in the beginning of the segment produced in the next iteration). This seg-
mentation strategy is suitable for cyclic activities (e.g. walking) or static postures
(e.g. detecting sitting) whereas the Event Segmentation is suitable when sporadic
activities need to be detected first (e.g. a gait stride).

The Manual Segmentation is a special segmentation algorithm used during devel-
opment that generates segments around annotations. In particular, it converts Range
Annotations into segments and creates segments around an Event Annotation using
an Event Segmentation.

Feature Extraction

The WDK makes several common time- and frequency-domain feature extraction
algorithms available for reuse. Feature extraction algorithms available in the WDK
inherit from the Feature Extractor class, as illustrated in Figure 3.6. The Feature
Extractor uses a Segment to create a Feature. A Feature encapsulates a 32-bit floating
point value. Feature Vectors aggregate a set of extracted features and are used by the
machine learning classifiers, which we discuss next.

+execute(data)

Feature
Extractor

+execute(data)

Max
+execute(data)

Mean

+execute(data)

Energy

+execute(data)

M i n

+execute(data)

Kurtosis

+execute(data)

IQR

-value

Feature Feature
Vector-startSample...

-endSampleI...
-data

Segment

1 * *1*

processes creates

Powered By�Visual Paradigm Community Edition

Figure 3.6: Classes available in the WDK to support the feature extraction stage. A
complete list of the feature extraction algorithms available in the WDK is available
in its Git repository.

Classification

Figure 3.7 shows the reusable objects offered by the WDK to support the classification
stage. The superclass of every classification algorithm is the Classifier. A Classifier
classifies Feature Vectors and produces labels as output. The Label object encapsu-
lates 8-bit unsigned integer variables. The current implementation of the WDK only
contains statistical pattern recognition methods. Other inference methods (e.g. tem-
plate methods, syntactic methods and neural networks) can be easily added to the
WDK by extending the Classifier class.

22

3.3. WDK REPOSITORY

Feature
Vector +execute(data)

Classif ier

-kernelType
-boxConstraint

+execute(data)

SVM
Classif ier

-nNeighbors
-distanceMetric

+execute(data)

KNN
Classif ier

-maxNumSplits

+execute(data)

Decision
Tree

+execute(data)

Linear
Discr iminant

-value

Label

-nLearners

+execute(data)

Ensemble
Classif ier

+execute(data)

C45
Classif ier

-means
-stds

Feature
Normal izer

1* 1 *1 *

normalizes createsprocesses

Powered By�Visual Paradigm Community Edition

Figure 3.7: Classification algorithms offered by the WDK.

Postprocessing

Postprocessing components modify the values of the labels produced by a Classifier
subclass. Figure 3.8 shows the reusable objects offered by the WDK to support the
postprocessing of labels. The Label Mapper maps the labels specified in its source-
Labeling property to the labels in its targetLabeling property. This can be useful to
group related labels under a single category. For example, irrelevant motions included
as classes in a classifier might be grouped under the same NULL-class category using
this component. The SlidingWindowMaxLabelSelector defines a window of window-
Size labels centered at each label in the input array. It then replaces each label with
the most frequent label in the window around it or with the NULL-class if no label
occurs at least minimumCount times within the window. This can increase the recog-
nition performance in applications where multiple instances of an activity tend to be
performed together (e.g. gait strides).

-value

Label

-windowSize
-minimumCount

+execute(data)

Label Sliding
Window Max Selector

+execute(data)

Postprocessing
Algor i thm

-sourceLabeling
-targetLabeling

+execute(data)

Label Mapper

1*

processes

Powered By�Visual Paradigm Community Edition

Figure 3.8: Algorithms offered by the WDK to modify the results of a Classifier.

3.3.2 WDK Development Components

The WDK Development Components layer contains functionality commonly used dur-
ing the development of activity recognition applications. Figure 3.9 shows the sub-
classes of the Algorithm and Data classes used in this layer. In the rest of this section,

23

CHAPTER 3. THE WEARABLES DEVELOPMENT TOOLKIT

we discuss each of these classes separately.

+execute(data)

Labeler -shouldNormalizeFeatures

+execute(data)

Val idator

+execute(data)

A lgor i thm

Annotat ion
Set

Data

-fileName
-signalNames
-data

Data File Features
Table

Table Set

-fileName

+execute(data)

Data
Loader

* *

*

*

*

processes

successors

Powered By�Visual Paradigm Community Edition

Figure 3.9: Overview of the reusable classes to develop activity recognition algo-
rithms.

Data Acquisition

Figure 3.10 shows the reusable components in the WDK to load data files and anno-
tations. The File Loader and Annotation Loader are Computer subclasses that don’t
take any parameter as input but produce a Data File and an Annotation Set as out-
put, respectively. A Data File contains the data loaded from a file in a 2-dimensional
array of floating point values and additional information about the data, including
the name of the file from which the data was loaded and the names of the signals
contained in the file. An Annotation Set contains a list of Range Annotations and
another one of Event Annotations. Both annotation classes inherit from the base
Annotation class, which encapsulates an 8-bit integer label. Range Annotations have
a duration in time and contain the index of the start and end sample in the original
signal. Event Annotations are sudden events represented with the index of the sensor
sample in the original signal.

-signalIndices

+execute(data)

File
Loader

+execute(data)

Annotat ion
Loader

Annotat ion
Set

-sample

Event
Annotat ion

-startSample
-endSample

Range
Annotat ion

-truthLabel

Annotat ion

-fileName
-signalNames
-data

Data File

-fileName

+execute(data)

Data
Loader

*

1*

1

*
loads

loads

Powered By�Visual Paradigm Community Edition

Figure 3.10: Taxonomy of annotations and reusable components to load data files
and annotations.

24

3.3. WDK REPOSITORY

Labeling

Labeling is the process by which the label in an Annotation is assigned to a segment
or event. Labeled events and segments can be used during development to train a
machine learning algorithm and to assess the performance of an event detection or
classification algorithm. Figure 3.11 shows the classes the WDK offers to label events
and segments. The Events Labeler labels a detected Event with the label of the
nearest Event Annotation within a user-specified tolerance. The Event Segments La-
beler labels segments that were extracted around a detected event (i.e. with the Event
Segmentation) using an instance of the Events Labeler class. The Range Segments La-
beler labels segments based on range annotations. If its shouldContainEntireSegment
property is set to true, it labels each segment with the label of the range annotation
that includes the segment entirely. Otherwise, it labels segments with the label of the
Range Annotation that includes the sample in the middle of the segment.

Annotat ion
Set +execute(data)

Labeler

Event
Segments
Labeler-shouldContainEntireSegment

Range Segments
Labeler

-tolerance

Events
Labeler-sampleIdx

-value

Event
-startSampleIdx
-endSampleIdx
-data

Segment

-value

Label

1
*

1*

1 *

1 *

creates

labels

labels

Powered By�Visual Paradigm Community Edition

Figure 3.11: Reusable classes to label events and segments.

Validation

Figure 3.12 shows the classes the WDK makes available to assess the performance of
an activity recognition algorithm. The WDK aggregates the Feature Vectors extracted
from all of the segments of a Data File together with a Label per Feature Vector into a
so-called Features Table. A Table Set is an aggregation of Feature Tables. The WDK
supports two kinds of validation strategies. The Holdout Validator trains a classifier
and predicts the labels of different subsets of Feature Table instances once. Which of
the Feature Tables in a Table Set are used for training and for assessment is defined
by the trainIndices and testIndices variables of the Holdout Validator. The Leave-
One-Out-Cross-Validator trains a classifier with all but one Feature Table, predicts
the labels of the excluded Feature Table and then repeats the procedure excluding a
different Feature Table. This process is repeated until the labels of every Feature Table
have been predicted. The Assessment tool in the WDK uses the predicted labels of
a Feature Set to compute different performance metrics, as we discuss in the next
section.

25

CHAPTER 3. THE WEARABLES DEVELOPMENT TOOLKIT

-trainIndices
-testIndices

Holdout Val idator

Features
Table

Feature
Vector -value

Label

+execute(data)

Classif ier

-means
-stds

Feature
Normal izer -shouldNormalizeFeatures

+execute(data)

Val idator

Leave-One-Out
Cross-Val idator

Table Set

*1

*1 *

*

validates

Powered By�Visual Paradigm Community Edition

Figure 3.12: Reusable classes to assess the performance of a recognition algorithm.

3.4 WDK Tools

The WDK offers four tools to facilitate: the annotation of data, the analysis of data,
the implementation of recognition algorithms and their performance assessment. We
discuss each of these tools separately.

3.4.1 Data Annotation Tool

The Data Annotation tool provides functionality to visualize and annotate time se-
ries data from multiple sensors. The tool supports the two kinds of annotations we
presented in Section 3.3.2: Event Annotations and Range Annotations. Developers
introduce annotations by selecting an activity from a list and indicating a sample on
the data. The tool can display video files next to the data, which can be used as a
reference during the annotation of data.

Figure 3.13: The Data Annotation tool displays the annotations corresponding to
the gait of a cow.

26

3.4. WDK TOOLS

The Data Annotation tool enables selecting and iterating through each sample of
the data and frame in the video. The selected video frame and data sample are kept
synchronized so that the selected data sample is updated automatically to match the
currently displayed video frame and the displayed video frame is updated to match
the selection of a different data sample. Figure 3.13 shows an annotated data set.

3.4.2 Data Analysis Tool

Before developers are able to implement an activity recognition algorithm, they need
to study a data set containing the activities to recognize. The Data Analysis tool is
used to study the effects of different signal processing and segmentation algorithms
on the data and to devise possible feature extraction algorithms to discriminate be-
tween the activities to recognize. In particular, the Data Analysis enables developers
to configure an activity recognition algorithm up to the segmentation stage and dis-
plays the segments produced by the algorithm grouped by activity. By visualizing
the output of a segmentation algorithm, developers can study the signatures of the
different activities to be recognized. By doing so, they gain an insight into which
preprocessing, event detection, segmentation and feature extraction algorithms could
be useful for their particular recognition problem. Figure 3.14 shows the signatures
of eight different activities generated with the Data Analysis tool.

Figure 3.14: The Data Analysis tool shows segments that correspond to rehabilitation
exercises performed by patients after a hip replacement surgery.

Furthermore, as we discussed in Section 2.1.4, the annotation of data can be
challenging when different activities blur into each other without a clear boundary.
By displaying segments of data generated from the annotations, developers can gain
an overview of the annotations and assess their consistency. This is done in the Data
Analysis tool by selecting the Manual Segmentation as segmentation strategy.

3.4.3 Algorithm Development Tool

Activity recognition algorithms can be developed in the WDK by directly reusing
the components we presented in Section 3.3 within a Matlab environment. Doing so
enables the reuse of the functionality available in the WDK in combination with the

27

CHAPTER 3. THE WEARABLES DEVELOPMENT TOOLKIT

large set of libraries provided by Matlab. While implementing recognition algorithms
within the Matlab environment provides developers with the flexibility to develop
custom functionality, it requires them to be able to write source code.

To support less experienced developers, the Algorithm Development tool enables
the development of activity recognition algorithms with a visual programming lan-
guage. The tool is an extension of the Node-RED1 visual flow-based programming
platform. We have extended Node-RED by adding a Javascript implementation of ev-
ery reusable component in the WDK’s repository. Our extended version of Node-RED
is also open-source and is available in a separate Git repository2.

Figure 3.15: The Algorithm Development tool shows an algorithm to classify activi-
ties of daily living as described in [14].

3.4.4 Algorithm Assessment Tool

The Algorithm Assessment tool computes and displays the recognition and computa-
tional performance of an activity recognition algorithm. To compute the recognition
performance of an algorithm, the tool executes the algorithm and compares the labels
in the Features Tables generated by the algorithm against the labels in an Annotation
Set. The recognition performance metrics computed by the Algorithm Assessment
tool are: accuracy, precision, recall, F1-Score and confusion matrix. These metrics
are shown per input data file and per activity. In addition, the tool displays a frame-
by-frame comparison between the ground truth and the prediction of the recognition
algorithm on top of the raw data used as input. This comparison is shown next to the
reference video, which is automatically synchronized to the selected data sample as
in the Data Annotation tool. The computational performance metrics computed by
this tool for a recognition algorithm are: the maximum amount of memory consumed
at any point by the algorithm, the total amount of floating operations performed and
the amount of data output in bytes.

1https://nodered.org/
2https://github.com/avenix/WDK-RED

28

Chapter 4

Evaluation

This chapter demonstrates how the WDK is used to create activity recognition algo-
rithms from three different domains: sports, daily activity monitoring and medicine.
The goal of our evaluation is to demonstrate that the WDK lowers the entrance barrier
to the development of activity recognition applications and that it can be used in dif-
ferent application domains. Section 4.1 demonstrates the ease of use of the WDK with
a step-by-step walkthrough to develop an algorithm to recognize goalkeeper training
exercises. Section 4.2 demonstrates how the WDK’s components are used to re-create
two additional activity recognition applications. The first one recognizes daily activi-
ties (e.g. walking, running, brushing teeth) using inertial sensors attached at different
positions of the body. The second one uses a single inertial sensor attached at the
ankle to recognize exercise repetitions performed by patients after a hip surgery.

4.1 Step-by-step Walkthrough: Goalie Glove

The first application we describe is the Goalie Glove. Goalie Glove is a goalkeeper
glove with an integrated inertial sensor to help goalkeepers improve their skills. In
particular, it recognizes different exercises performed by goalkeepers during a training,
computes quality metrics about each exercise and provides feedback to goalkeepers
over a user interface in a smartphone. In order to compute quality metrics from the
training exercises, the exercises first have to be recognized in a stream of inertial sensor
samples. This section demonstrates how to use the WDK to develop an algorithm to
detect and classify goalkeeper training exercises using inertial sensor data.

4.1.1 Data Collection and Annotation

We started the development of this activity recognition algorithm by collecting a data
set containing data from 7 goalkeepers collected during their training sessions. The
data was collected at 200 Hz using an ICM20948 9-axis inertial sensor, which contains
an accelerometer, gyroscope and magnetometer. The data was afterwards normalized

29

CHAPTER 4. EVALUATION

to the range [−1, 1] by dividing each sample by the sensor’s maximum ranges. On
average, each training session lasted 33 minutes. We recorded the training sessions
on video for annotation purposes. Figure 4.1 shows screenshots taken from the videos
we collected.

Dr. Juan Haladjian - A Development Platform for Wearable Devices 4

Dive Right Dive Left

Catch Hand Catch Body Catch Ground Jump Catch

Short Dive LeftShort Dive Right

Figure 4.1: Training exercises performed by soccer goalkeepers.

As this application requires the detection of sporadic events (i.e. training exercises
in a stream of inertial sensor samples), we know that our recognition algorithm will
rely on an event detection method. In particular, the activities the algorithm should
recognize are associated with a high energy of acceleration. Hence, we consider detect-
ing these activities with a peak detection algorithm, as done in similar applications
[18, 89, 32]. In order to be able to assess the performance of an algorithm that detects
peaks of acceleration, we annotate the peaks the algorithm should detect using the
Data Annotation tool as Event Annotations. In total, we annotate 18 variations of
training exercises, including those shown in Figure 4.1.

We also observe that our data set contains several irrelevant motions that are
likely to be detected by a peak detection algorithm, such as the motion to pass the
ball to a coach. When these motions are detected, they should be recognized as false
positives. In order to recognize irrelevant motions as false positives, we decide to
include them as a class in a machine learning classifier. To be able to train a classifier
to recognize irrelevant motions, we add the peaks associated to irrelevant motions
performed frequently by goalkeepers to our annotation set. In total, we annotate
4153 Event Annotations, out of which 916 correspond to relevant exercise repetitions
and 3237 are instances of irrelevant motions.

30

4.1. STEP-BY-STEP WALKTHROUGH: GOALIE GLOVE

4.1.2 Data Analysis

We know that the peaks corresponding to training exercises can be detected with a
peak detection algorithm, as discussed in the previous section. In the WDK, segments
can be extracted around the Events detected by a peak detection algorithm with the
Event Segmentation component. The Event Segmentation generates segments that
contain the segmentSizeLeft samples to the left and the segmentSizeRight samples
to the right of each detected event. We use the Data Analysis tool to decide on
the values for the segmentSizeLeft and segmentSizeRight parameters. To this end, we
assign both parameters to a value of 300 and compare the magnitude of acceleration of
the different exercises, as shown in Figure 4.2. Based on this comparison, we observe
that the characteristic motion of most exercises starts approximately 200 samples
before the peak and that most exercises end shortly after it. Furthermore, the motion
characteristic of some exercises (e.g. dives) might last longer than 200 samples before
the peak. However, extending the segments to more than 200 samples before the peak
would lead to additional memory costs and cause motion that is not characteristic of
other exercises to be included in the segment. Based on these observations, we decide
for parameters segmentSizeLeft=200 and segmentSizeRight=30.

Figure 4.2: The Data Analysis tool displays the magnitude of acceleration of different
training exercise segments plotted on top of each other. We highlighted the parts of
the signal that contain motion characteristic to each exercise with a green overlay.

After having decided for a segmentation algorithm, we study what feature ex-
traction algorithms can be used to discriminate between the different exercises. We
compare the segments produced by our segmentation algorithm in the Analysis tool,
as shown in Figure 4.3. We observe that most exercises consist of sequences of mo-
tions. For example, the dives consist of an arm swing, the actual dive and finally an
impact with the ground. As these sequences of motions are individual to each exer-
cise, they can be useful to discriminate between them. For example, the arm swing
goalkeepers perform before a dive is associated to the samples in the range [1, 60]. Fur-
thermore, the range [61, 180] can provide information to discriminate between dives,
jump catches and other types of catches, as these exercises are associated with consid-
erable different accelerations in this range. Finally, the range [181, 230] corresponds
to the impact of a ball or with the ground, which is also different among exercises.

31

CHAPTER 4. EVALUATION

For example, dives are associated to more and longer accelerations in this range than
the catches. Therefore, we decide to divide the segments in three sub-segments in the
ranges: [1, 60], [61, 180] and [181, 230]. For each of these sub-segments, we extract
different features computed on different axes of the accelerometer and magnetome-
ter signals. In total, we extract 45 time-domain features including the minimum,
maximum, mean, median, variance, standard deviation and area under the curve.

Figure 4.3: The Data Analysis tool shows two accelerometer signals of different
exercises. We have highlighted the sub-segments [1, 60], [61, 180] and [181, 230] with
a green, blue and orange overlay, respectively.

4.1.3 Algorithm Implementation

We develop the recognition algorithm shown in Listing 4.1 using the WDK compo-
nents in a Matlab script. The algorithm relies on the accelerometer and magnetometer
signals. First, it uses an AxisSelector to extract all three accelerometer axes from the
input Signal (line 1). The resulting Nx3 Signal is passed to the Magnitude compo-
nent (line 2). The Magnitude computes the magnitude of each accelerometer vector
in the input Signal and passes the computed magnitude values in an Nx1 Signal to
the SimplePeakDetector (line 5). The SimplePeakDetector detects peaks in the mag-
nitude Signal and returns an array of Events containing the detected peaks. The
EventSegmentation generates Segments around the detected peaks containing the 200
samples to the left and 30 samples to the right of each peak (line 8). The extracted
Segments are passed to the FeatureExtractor which is loaded from the features.mat file
(line 11). This feature extraction algorithm extracts the 45 features mentioned in the
previous subsection for each Segment and outputs a FeaturesTable. The FeatureNor-
malizer normalizes the FeaturesTable such that each of its columns has zero mean
and a standard deviation of one (line 15). The normalized FeaturesTable is passed to
the SVMClassifier component (line 18). The SVMClassifier predicts a label for each
of the rows in the input FeaturesTable and returns the array of predicted labels in a
ClassificationResult object. Line 21 organizes the aforementioned components into a
Matlab’s cell array and line 22 builds an Algorithm that executes them in a sequence
by passing the output of a component as input to its successor component. The Al-

32

4.1. STEP-BY-STEP WALKTHROUGH: GOALIE GLOVE

gorithm Assessment tool uses the ClassificationResults produced by this algorithm to
compute different performance metrics, as we discuss in the next subsection.

Listing 4.1: Algorithm to detect and classify soccer goalkeeper training exercises.
1 axisSelector = AxisSelector(1:3);%AX AY AZ
2 magnitude = Magnitude();
3

4 %minPeakHeight=0.8, minPeakDist=100
5 peakDetector = SimplePeakDetector(0.8,100);
6

7 %creates segments in the range: [p-200,p+30]
8 segmentation = EventSegmentation(200,30);
9

10 %loads algorithm shown in the right
11 featureExtractor = DataLoader.LoadComputer('features.mat');
12

13 featureNormalizer = FeatureNormalizer();
14 featureNormalizer.fit(trainTable);%compute normalization values
15 featureNormalizer.normalize(trainTable);%normalize training data
16

17 %order=1, boxConstraint=1.0
18 classifier = SVMClassifier(1,1);
19 classifier.train(trainTable);
20

21 components = {axisSelector, magnitude, peakDetector, segmentation,
featureExtractor, featureNormalizer, classifier};

22 algorithm = Computer.ComputerWithSequence(components);

4.1.4 Performance Assessment

This section describes how we use the Algorithm Assessment tool to assess and op-
timize the performance of the recognition algorithm described in the previous sub-
section. First, we find suitable values for the minPeakHeight and minPeakDistance
properties of the SimplePeakDetector. We know that too low values of these param-
eters might cause a larger amount of false positive detections and too high values
might cause relevant exercises to be missed (false negatives). We test different val-
ues for these parameters and decide to configure them as: minPeakHeight = 0.8
and minPeakDistance = 100. With these parameters, the algorithm detects 93.3%
of the relevant exercises but has a false positive rate of 49.1% (i.e. it detects ap-
proximately one false positive for every two relevant exercises detected). We use the
frame-by-frame analysis to gain an insight into what irrelevant motions are detected
by the algorithm, as shown in Figure 4.4. We observe that several motions cause
false positive detections, such as the motions performed by players to pick up a ball
from the ground or to pass a ball to a coach after performing a catch execise. As
discussed in subsection 4.1.2, we addressed this issue by including the motions per-

33

CHAPTER 4. EVALUATION

formed frequently by goalkeepers as classes in the machine learning classifier. Using
an SVMClassifier with parameters: order = 1 and boxConstraint = 1.0, the events
detected are classified with an accuracy of 81.8%, a precision of 81.4% and a recall of
79.8%.

Figure 4.4: The frame-by-frame analysis displays the results of a recognition algo-
rithm on top of the magnitude of acceleration. The algorithm detected four exercises
(shown in green) and two irrelevant motions (shown in red). After this goalkeeper
performs a throw, the ball is passed back at him with high intensity, which is detected
(as a false positive) by the algorithm.

The Algorithm Assessment tool provides an overview of the computational perfor-
mance of different architectures to run this algorithm. If only the segmentation was
done on the wearable device, 657.7 KB of data would have to be transferred from the
wearable device for an average training session. This is calculated by the WDK as
an average of 244 segments per training session with a size of 230x6 values each and
using 2 bytes per value. If the feature extraction was also performed on the wearable
device, only 42,9 KB of data would be produced on average per training (244 feature
vectors with 45 features represented with 4 bytes each). Finally, if the classification
was also performed on the wearable device, only 2.1 KB of data would be generated
(244 1-byte labels and an 8-byte timestamp). Furthermore, the Algorithm Assessment
tool estimates a memory cost of 2.7 KB for the event detection, segmentation and fea-
ture extraction stages. Most of the memory required by this algorithm corresponds to
the EventSegmentation component, which allocates a matrix of 230x6 cells of 2 bytes
per value to store the produced segment. Based on this information, we decide for an
architecture that performs the segmentation and feature extraction on the wearable
device and transmits the extracted feature vectors for classification to a mobile device.

34

4.2. REFERENCE APPLICATIONS

4.2 Reference Applications

The WDK supports the development of activity recognition applications in different
domains. This section demonstrates how the reusable components in the WDK are
instantiated to re-create two existing activity recognition algorithms. The first one rec-
ognizes household activities such as sitting, stretching or tooth brushing. The second
one recognizes rehabilitation exercises performed by patients after a hip replacement
surgery to help caregivers decide on a treatment. We use UML object models to de-
scribe how the WDK components are instantiated and the flow of execution in each
recognition algorithm.

4.2.1 Reference Application 1: Daily Activity Monitoring

The first algorithm we discuss was developed by Bao and Intille [14] in 2004. It is able
to recognize activities of daily living with 84% accuracy using 2-axis accelerometers
placed at difference positions in the body. The algorithm computes features on win-
dows with 512 samples of acceleration data with 50% overlapping between consecutive
windows. For each window, it computes the following features: mean acceleration,
sum of the squared FFT coefficients, entropy of FFT coefficients and correlation be-
tween both accelerometer axes. It relies on a C4.5 decision tree classifier to classify
feature vectors.

: Feature Extraction

iterationSize = 256
windowSize = 512

: Sliding Window
Segmentation

: FFT

: Spectral
Energy

: Spectral
Entropy

: Mean

numAxes = 2

: Axis
Merger

axis = 2

: Axis
Selector

: Correlation

axis = 1

: Axis
Selector

: Feature
Extraction

: C45
Classif ier

Powered By�Visual Paradigm Community Edition

Figure 4.5: An instantiation of the WDK components to reproduce the recognition
algorithm introduced in [14].

A concrete instantiation of the WDK components to reproduce this algorithm
is shown in Figure 4.5. Our algorithm takes a Signal as input with two columns
(one for each accelerometer axis) and segments it with a SlidingWindowSegmentation.
The SlidingWindowSegmentation is configured to have a size of 512 samples and 50%
overlapping between consecutive windows. Hence, it passes Segments of 512x2 samples
to the two Axis Selectors. The Axis Selectors extract a single Signal contained within
the Segments, which they pass to the Feature Extraction component. The Feature
Extraction extracts a total of four features for each Signal it receives, as we describe in
the next subsection. The features extracted by the Feature Extraction are aggregated

35

CHAPTER 4. EVALUATION

into a Features Table. Finally, the C45 Classifier predicts a label for each row in the
input Features Table and sets the Features Table’s label property.

Feature Extraction

Figure 4.6 shows the reusable objects we instantiate to extract features in our recog-
nition algorithm. The Feature Extraction component is a composite algorithm that
contains an array of Feature Extractor subclasses. Its execute method invokes the
execute method of each of the Feature Extractor subclasses it contains. In particular,
it computes the Mean, Spectral Entropy and Spectral Energy of both accelerometer
axes and the Correlation between the two axes. The Spectral Entropy and Spectral
Energy require the prior computation of the Fourier coefficients, which is done by
the FFT component. The Axis Merger is a convenience component that creates a
two-column Signal from two single-column Signals. The two-column Signal contain-
ing both accelerometer axes is passed to the Correlation object, which computes the
correlation between both axes. The output of each leaf node in the feature extraction
algorithm is appended to an array processed by the Feature Extractor.

: Feature Extraction

iterationSize = 256
windowSize = 512

: Sliding Window
Segmentation

: FFT

: Spectral
Energy

: Spectral
Entropy

: Mean

numAxes = 2

: Axis
Merger

axis = 2

: Axis
Selector

: Correlation

axis = 1

: Axis
Selector

: Feature
Extraction

: C45
Classif ier

Powered By Visual Paradigm Community Edition

Figure 4.6: Feature extraction algorithm described in [14].

4.2.2 Reference Application 2: HipRApp

The second application we demonstrate is HipRApp (Hip, Rehabilitation App).
HipRApp is a wearable strap band to track the progress of the rehabilitation of pa-
tients who underwent a hip replacement surgery. Hip replacement is a procedure in
which a hip joint is removed and replaced by a prosthetic implant. The rehabilitation
after a hip replacement usually starts a day after the surgery and involves walking and
performing a set of physical exercises daily. Patients are usually discharged within
the first week after the surgery and are advised to continue exercising for months
afterwards. Thereafter, they train mostly without supervision and lack of feedback
regarding the quality of their exercising and rehabilitation progress. Orthopedists

36

4.2. REFERENCE APPLICATIONS

meet patients at irregular time intervals (often every 3 or 4 months) and base their
treatment decisions mostly on the observations they make during the visit. HipRApp
estimates the rehabilitation progress of a patient of hip replacement surgery by count-
ing the amount of exercise repetitions performed by a patient per day. In this section,
we demonstrate how we developed an algorithm to recognize exercise repetitions per-
formed by patients using a motion sensor attached to the patient’s ankle.

cutoff = 20
order = 1
inPlaceComputation = true

: LowPassFilter

iterationSize = 244
windowSize = 488

: Sliding Window
Segmentation

distanceMetric = eu...
nNeighbors = 10

: KNN
Classif ier : Feature

Extraction

means = [...]
stds = [...]

: Feature
Normal izer

axis = [1,2,3]

: Axis
Selector

minimumCount = 4
windowSize = 6

: Label Sliding
Window Max

Selector

Powered By�Visual Paradigm Community Edition

Figure 4.7: Algorithm to classify rehabilitation exercises performed by patients after
a hip surgery.

Figure 4.7 illustrates the algorithm we developed to recognize rehabilitation exer-
cise repetitions in a stream of samples produced by a 6-axis inertial sensor (accelerom-
eter and gyroscope) worn by patients at the ankle. First, the AxisSelector extracts
the three accelerometer signals from the input data into an Nx3 Signal object. The
LowPassFilter applies a Butterworth low-pass filter to each of the Signal ’s columns
to eliminate high-frequency noise in the accelerometer signal. Then, the SlidingWin-
dowSegmentation creates Segments of 488x6 samples that overlap by 244 samples with
consecutive Segments. For each Segment produced by the SlidingWindowSegmenta-
tion, the Min, Max, Mean, Median, Variance, STD, AUC, AAV, MAD, IQR, RMS,
Skewness and Kurtosis are computed. Listing 4.2 shows the code we use to create
a FeatureExtraction instance that extracts these features on every signal from the
accelerometer and gyroscope sensors. The extracted features are aggregated by the
FeatureExtraction into a FeaturesTable.

Listing 4.2: Code to create a feature extraction algorithm for the HipRApp applica-
tion.
1 %creates a cell array of Feature Extractor objects
2 featureExtractors = {Min(), Max(), Mean(), Median(), Variance(), STD(),...
3 AUC(), AAV(), MAD(), IQR(), RMS(), Skewness(), Kurtosis()};
4

5 %creates a FeatureExtraction object that extracts each
6 %feature in the 'featureExtractors' array for each axs in the range [1,6]
7 featureExtraction = FeatureExtraction(featureExtractors,1:6);

37

CHAPTER 4. EVALUATION

The FeatureNormalizer normalizes FeaturesTables and passes them to the KN-
NClassifier. The KNNClassifier predicts a label for each row in a FeaturesTable and
returns a ClassificationResult containing an array of predicted labels. Finally, the
SlidingWindowMaxLabelSelector replaces every label at index labelIndex in the array
of predicted labels with the most frequent label in the range [labelIndex − 3, labelIn-
dex + 3], or with the NULL-class if no label occurs at least 4 times in the range. This
is done to ’favor ’ the recognition of a single exercise in a series of repetitions based
on the fact that patients usually perform 10 to 20 repetitions of an exercise in a row
before stopping or moving on to the next one.

38

Chapter 5

Conclusions and Future Work

We have presented a development environment for activity recognition applications
with wearables. The reusable components and tools available in the WDK derive from
our comprehensive analysis of the state of the art in the field of activity recognition
with wearable sensors. The applications we chose to demonstrate the toolkit together
with the different publications we reprint in Chapter 6 validate the ease of use and
generalizability of the WDK to different application domains. Additional details about
the WDK are available in our publication [36]. The latest version of the WDK’s code
can be found in its Git repository1.

This work opens up several future research directions. First, our work addresses
how to recognize activities, but not what to do with the recognized activities. How-
ever, most applications use the recognized activities in similar ways. For example,
sport applications often compute performance metrics specific to each recognized ac-
tivity and applications for daily activity monitoring keep track of the activities over
time to compute trends, detect deviations from usual activity patterns and provide
comparisons across users. A comprehensive literature review could study how the re-
sults of a recognition have been used in previous applications and derive abstractions
that could be made available within a tool such as the WDK, or as an extension to
the WDK.

In the last few years, there has been an increasing interest in adapting neural
networks to activity recognition applications. Deep neural networks methods are
of great interest because: 1) they have surpassed the manually-crafted recognition
algorithms in recognition performance in large public data sets [110] and 2) they don’t
require developers to go through the process of studying signal processing and feature
extraction methods, which is not only tedious but demands a considerable amount of
experience. We decided to leave these methods out of the scope of this work because
they usually require larger amounts of data than typically available when working
with wearable sensors and due to their computational complexity. However, neural
networks are likely to become the state of the art in activity recognition with wearable
sensors eventually, as it has been the case in other research fields. To facilitate the
development of recognition algorithms that rely on neural networks, we foresee a
stronger need for tools to support the proper selection and augmentation of training

1https://github.com/avenix/WDK

39

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

data, the elimination of outlier data, the optimization of hyperparameters and the
deployment of a trained model into an embedded device.

Another way to avoid having to manually develop recognition algorithms is by
drawing methods from generative design. In generative design, different designs are
generated automatically, from which the most suitable one is selected based on a user-
defined optimization metric and set of constraints. The WDK offers a set of reusable
components, each of which might have different properties. A generative design ap-
proach would automatically generate different recognition algorithms by combining
the different components in the WDK and configuring their properties. The recog-
nition and computational performance of each automatically generated recognition
algorithm could be used as optimization metrics. In addition, developers could set
constraints to the computational performance of an algorithm to limit the search space
and to ensure that the computational requirements of an algorithm remain within the
constraints imposed by the wearable device.

40

Chapter 6

Publications

This chapter contains a copy of the publications this Habilitation is based on. We first
summarize the publication and then include a reprint of it. Every activity recognition
application presented in this chapter has been used to refine the WDK’s abstractions
and elicit requirements for its tools.

6.1 The Wearables Development Toolkit: An Inte-
grated Development Environment for Activity
Recognition Applications

This publication describes the WDK in detail including its architecture, repository
of reusable components, set of tools and its key features. We demonstrate the usage
of the WDK with the same three wearable device applications we discussed in the
Chapter 4 of this Habilitation. In addition, we present a usability study conducted
with five engineers who used the WDK and gave us feedback to improve it.

The author of this Habilitation developed the WDK based on the different appli-
cations presented in this Habilitation and wrote the article.

Authors Haladjian, J.

Journal Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT)

Number of Pages 26
Type Journal Article
Review Peer Reviewed (4 Reviewers)
Year 2019
DOI

41

134

The Wearables Development Toolkit: An Integrated Development
Environment for Activity Recognition Applications

JUAN HALADJIAN, Technische Universität München

Although the last two decades have seen an increasing number of activity recognition applications with wearable devices, there
is still a lack of tools specifically designed to support their development. The development of activity recognition algorithms
for wearable devices is particularly challenging because of the several requirements that have to be met simultaneously
(e.g., low energy consumption, small and lightweight, accurate recognition). Activity recognition applications are usually
developed in a series of iterations to annotate sensor data and to analyze, develop and assess the performance of a recognition
algorithm. This paper presents the Wearables Development Toolkit, an Integrated Development Environment designed to
lower the entrance barrier to the development of activity recognition applications with wearables. It specifically focuses
on activity recognition using on-body inertial sensors. The toolkit offers a repository of high-level reusable components
and a set of tools with functionality to annotate data, to analyze and develop activity recognition algorithms and to assess
their recognition and computational performance. We demonstrate the versatility of the toolkit with three applications and
describe how we developed it incrementally based on two user studies.
CCS Concepts: • Human-centered computing→ Ubiquitous and mobile computing systems and tools;

Additional Key Words and Phrases: Human Activity Recognition, Wearables, Toolkit, Flow-based programming, Development
Environment, Machine Learning
ACM Reference Format:
Juan Haladjian. 2019. The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 4, Article 134 (December 2019), 26 pages. https:
//doi.org/10.1145/3369813

1 INTRODUCTION
Over the last two decades, a number of activity recognition applications based on wearable sensors have been
introduced, mostly by the research community. Applications areas include sports (e.g., table tennis [6], soccer
[61], cricket [32]), health (e.g., gait analysis of patients of Parkinson’s Disease [46], rehabilitation after knee
injuries [25]), daily activity monitoring (e.g., drinking [52], eating [1], fall detection [8]) and animal welfare (e.g.,
lameness detection in dairy cattle [24], horse jump and gait classification [13]). These applications can help assess,
keep track of and improve the physical condition of the wearer unobtrusively, often with minimum setup and
independently of the wearer’s location.
While the existing applications have already highlighted the potential benefits of activity recognition to

different end user groups, developing activity recognition systems that are ultimately accepted by end users
remains a challenging task, for several reasons. First, in contrast to other recognition applications (e.g., computer
vision, speech recognition), activity recognition applications with wearable devices are bound to additional
requirements besides a highly accurate recognition. Common requirements include: low energy consumption
Author’s address: Juan Haladjian, juan.haladjian@cs.tum.edu, Technische Universität München, Boltzmanstr. 3, Munich, Germany, 85748.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2474-9567/2019/12-ART134 $15.00
https://doi.org/10.1145/3369813

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:2 • Juan Haladjian

(i.e., long-lasting battery), small and lightweight device and user comfort (e.g., form-factor, does not heat up) [15].
Second, the design space of a wearable device application is large. Design decisions have to be made regarding
the device itself (CPU, memory, sensors, communication and storage modules), the computations that will be
run on the device (sensor configurations, signal processing and machine learning methods) and the architecture
of the wearable system (e.g., hardware-software mapping involving the wearable, mobile devices, the cloud
and the communication between devices). As a consequence, it is often not possible to find a design that meets
every requirement, in which case a suitable trade-off between design alternatives has to be made. For example, a
particular recognition algorithm might deliver a higher accuracy, but might drain the battery faster than another,
less accurate recognition algorithm. Hosting a larger battery could make the device remain functional for a longer
period of time, but will usually also increase its size and weight, which might affect user comfort. Furthermore,
the entrance barrier to wearable device development remains high, as knowledge in multiple disciplines (e.g.,
computer science, data science, electrical engineering, human-computer interaction) is often necessary to design
wearable systems that meet the user needs.

Due to the aforementioned challenges, developers can rarely make every decision regarding the design of a
wearable system upfront. Instead, they usually engage in a series of iterations to assess different design alternatives
before they can decide for a suitable one. In particular, they collect and annotate data, they study the collected
data and devise, implement and assess different recognition methods. Based on the results of the assessment,
they decide whether further iterations are needed. Further iterations might include the collection of new data, or
the development, assessment and optimization of recognition methods.

While there exist Integrated Development Environments (IDEs) specifically designed to support the develop-
ment of other physical devices (e.g., mobile devices), there is up to date no IDE for activity recognition applications
with wearable devices. As a consequence, most developers of wearable systems still use general-purpose data
analysis tools and programing languages such as Matlab, Python, WEKA and C++. However, as these tools were
not designed for activity recognition applications with wearables, they do not directly support the aforementioned
tasks and have a high entrance barrier.

In this paper, we present the Wearables Development Toolkit (WDK), a development environment for activity
recognition applications with wearable devices. To lower the entrance barrier to the development of activity
recognition applications, the WDK offers a set of reusable software components that hide the complexity of
algorithms commonly used across activity recognition applications such as signal processing procedures and
machine learning classifiers. For developers with less programming experience, the same components are made
available within a visual flow-based programming environment. The WDK also facilitates the iterative and
incremental design of wearable device systems. In particular, it enables developers to assess the suitability of
a particular wearable system (recognition algorithm, hardware and architecture) to the requirements of an
application. To this end, it offers four tools to support common development tasks including the annotation
of sensor data, the analysis of the data produced by different algorithms, the development of a recognition
algorithm and the assessment of the computational performance (CPU usage, memory consumption, amount of
data transferred) of a particular wearable system design.

The rest of the paper is structured as follows. Section 2 provides an overview of other toolkits and development
environments and discusses how the WDK relates to them. In Section 3, we present the WDK and describe its
features, including the goals we based its design on, its architecture and the functionality it offers. Section 4
presents a step-by-step walkthrough describing how theWDK is used to create an activity recognition application.
We also demonstrate the versatility of the WDK to re-create two further activity recognition applications in
Section 5. In Section 6, we present the results of two user studies we conducted to assess and improve the usability
of the WDK.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:3

2 RELATED WORK
Several toolkits have been created that support the development of interactive, ubiquitous and wearable devices
and their applications. This section first provides an overview of the toolkits developed so far and then discusses
different development methods existing toolkits have relied on to lower the entrance barrier and reduce the time
needed to develop applications.

2.1 Toolkits
The toolkits developed so far can be grouped by the kind of applications they support. These include:

• Toolkits that facilitate the 3D-scanning, computer-aided design and 3D printing of objects as well as the
integration of electronics into them. These toolkits often offer high-level programming semantics to develop
applications that interact with the created objects. Toolkits that fall into this category include: Pineal [34],
Retrofab [48], Makers Marks [51], Sauron [50], Modkit [40].

• Toolkits that support the development of applications that sense information from a physical environment
(e.g., room temperature) and/or users in the environment (e.g., their posture) and enable joint interactions
between them. Some of the toolkits under this category are: EagleSense [58], Physikit [29], Sod-toolkit [54].

• Toolkits that enable the creation of applications distributed across multiple wearable, mobile or ubiquitous
devices. These toolkits offer programming semantics that span across multiple devices; hence, they save
users from having to program each device as well as the communication protocols between them. Toolkits
under this category include: Interactex [20], Panelrama [59], XDStudio [42], Weave [9], WatchConnect
[30], iStuff Mobile [3], ToyVision [39] and C4 [33].

• Toolkits that lower the entrance barrier to the development of applications that rely on specific hardware
technologies such as: smart textiles, [20], printed circuit boards [56], electrical muscle stimulation devices
[47], capacitive sensors [19] and paper-based electronics [49]. These toolkits offer a set of reusable hardware
and software components with high-level programming semantics that hide low-level implementation
details about the particular technology.

Most of these toolkits were not developed for activity recognition applications with wearables; hence, they
target different kinds of applications than theWDK. A more related class of toolkits corresponds to those designed
to lower the entrance barrier to the development of applications that react to user gestures. Toolkits under this
category include: Exemplar [27], MAGIC [2], GART [38] and (GT2k) [57]. These toolkits are similar to our work
in that they facilitate the creation of applications that detect specific patterns in sensor data. However, they focus
on gesture recognition and offer predefined recognition methods for this purpose: Exemplar [27] uses Dynamic
Time Warping (DTW), the MAGIC toolkit [2] relies on DTW together with a set of predefined features extracted
from the input data, the (GT2k) [57] uses a Hidden Markov Model (HMM) configured with a grammar specified
by the user and the GART toolkit [38] relies only on a HMM. The WDK makes a broader set of recognition
methods available to enable developers to experiment and ultimately design a recognition algorithm that fulfills
the requirements of the particular application.

The CRN Toolbox [4] and the more recent Gesture Recognition Toolkit (GRT) developed by Nick Gillian [16] are
perhaps the existing toolkits which share most similarity with the WDK. Both toolkits enable the development of
recognition algorithms with a set of reusable software components. While these toolkits ease the implementation
(i.e., programming) and assessment of an activity recognition algorithm, they do not support the rest of the
development lifecycle of a recognition algorithm. For example, these tools don’t facilitate the annotation of data,
its analysis and don’t provide a detailed assessment of the performance of an algorithm besides an aggregated
metric (e.g., F1-Score). This is an issue because developers rarely know upfront what algorithm to implement
without annotating and studying the data, developing, assessing and optimizing different recognition algorithms.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:4 • Juan Haladjian

The WDK consists of different tools integrated within a development environment to support these tasks and
facilitate the iterative development of activity recognition algorithms for wearables.

2.2 Programming Semantics
The existing toolkits lower the entrance barrier to users with high-level programming semantics. We have
identified four main programming paradigms used by most toolkits. In programming by demonstration, the toolkit
learns from demonstrations performed by users. Since this technique saves users from having to write code, it
has been used in several toolkits from the human-computer interaction community such as: a CAPpella [11],
Exemplar [27], Topiary [37], d.tools [28] and PaperPulse [49]. The ease to program an application using this
technique often comes at the cost of a lack of flexibility to define custom behaviors and performance limitations.
Since this paradigm relies on predefined recognition methods, users can often not optimize the recognition
algorithms to their applications.

In rule-based programming, the user defines which predefined behaviors should be executed upon the occurrence
of predefined events. Depending on the variety of events and behaviors available in the toolkit, relatively complex
programs can be created with this technique by connecting events to behaviors that might themselves trigger
other events. Toolkits that rely on this method include: Phidgets [17], Calder [36], Intuino [55], Amarino [31].
Flow-based programming is a popular visual programming approach where functionality commonly used

in a particular domain is modularized in so-called nodes. Nodes are visual representations that encapsulate
functionality and can be manipulated over a graphical user interface. A flow-based program looks like a directed
graph; users draw arrows between nodes to define the order of execution of the nodes as well as the flow of data
between them. Several toolkits have taken advantage of this programming technique in the past, including iStuff
Mobile [3], the CRN Toolbox [4] and Interactex [20].
In block-based programming, different programming constructs (for loops, if-conditions, variables) are repre-

sented visually in the form of blocks that can be otherwise used as in conventional programs. While the visual
representations of blocks make it easier to understand the syntax of a program (e.g., to understand the scope of a
for loop), users still need to be able to create programs using conventional programming constructs. Toolkits that
feature block-based programming include: Modkit [40] and AppInventor1.

Previously developed toolkits have also relied on text-based programming approaches, including scripting and
domain-specific languages. For example, the Weave toolkit [9] provides high-level APIs in Javascript for rapid
prototyping wearable device applications and C4 [33] is a script language with APIs to manipulate and animate
media objects such as images and movies in mobile device applications.
Since the programming by demonstration approach hides the recognition algorithm from developers, it also

takes away the opportunity for developers to optimize it, which we considered important due to the limited
computational resources available in a wearable device. Hence, we decided against it. We also thought that a
rule-based programming paradigm would not provide developers enough freedom to create and optimize activity
recognition algorithms. Furthermore, we considered that a block-based programming paradigm would make sense
for relatively simple programs developed for educational purposes, but not for activity recognition applications.
Since activity recognition applications often rely on similar functionality (signal processing and feature extraction
algorithms), we opted to encapsulate this functionality under a uniform interface and made it available for reuse
within a flow-based programming environment. However, we thought that a visual programming approach
alone would be prone to scalability issues when developing complex recognition algorithms with several feature
extraction methods. Therefore, we decided to offer the same functionality within a text-based programming
language.

1http://appinventor.mit.edu

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:5

3 THE WEARABLES DEVELOPMENT TOOLKIT
TheWDK consists of a library of reusable software components and a set of tools built on top of them. This section
first discusses the goals we aimed for in the design of the WDK and then describes the reusable components,
tools and main features in the WDK. The WDK is implemented in Matlab and is open source2 under MIT license.

Fig. 1. Typical development lifecycle of an activity recognition algorithm. Developers usually engage in a series of iterations
to collect and annotate a data set, study the collected data and then develop one or more recognition algorithms, assess and
optimize their performance until the requirements of the application are met.

3.1 Design Goals
We designed the WDK based on the following design goals:

Low entrance barrier. The development of a wearable system requires knowledge from multiple disciplines
including data analysis, signal processing, pattern recognition and embedded firmware development. Hence,
their entrance barrier is still high. However, many wearable systems rely on similar functionality (e.g., feature
extraction methods) and are developed in a similar way, as illustrated by Figure 1. A main goal of the WDK is to
provide a simple way for developers to reuse common functionality as well as to ease the development tasks.

Extensibility. Even if the most common functionality used across activity recognition applications was made
available for reuse within a toolkit, developers are likely to need new functionality for their particular applications,
such as custom feature extraction algorithms. For this reason, one goal in the design of the WDK was to enable
its set of available functionality to be extensible by developers with little effort.

Assessment of the computational requirements. Activity recognition applications are usually constrained
by the computational capabilities of the wearable device. In order to study the suitability of a recognition algorithm
to a particular wearable device, developers need to assess its computational requirements (CPU speed, memory
capacity, battery duration). As data analysis tools used to develop wearable device applications not always provide
an insight into the computational requirements of an algorithm, these are often estimated once the algorithm is
2https://github.com/avenix/WDK

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:6 • Juan Haladjian

ported to the target device. A goal in the design of the WDK was to aid developers with an early estimation of
the computational requirements of a recognition algorithm.

Recognition insight. Most activity recognition applications with wearable sensors extract patterns in a stream
of sensor data using machine learning classifiers. While existing tools provide aggregated metrics describing
the performance of a classifier (e.g., accuracy, F1-Score) they don’t provide further insight to aid developers find
issues in the recognition algorithm. A goal we pursued in the design of the WDK was to enable developers to spot
issues in a recognition with a frame-by-frame comparison between the ground truth and the recognition results.

Quick assessment. The training and performance assessment of a recognition algorithm is usually a compu-
tationally intensive task. As a consequence, the iterative process to develop, optimize and assess the performance
of an activity recognition algorithm could be hindered by long algorithm execution times. Therefore, in the
design of the WDK we aimed for solutions to quickly execute and assess recognition algorithms.

3.2 Architecture
Figure 2 illustrates the architecture of the WDK. The WDK is based on a repository architectural style. The
repository consists of a set of reusable components organized as a layered architecture on top of theMatlab runtime
environment. The middle layer of the repository contains the runtime components, a set of procedures executed
by activity recognition algorithms, whereas the top layer contains functionality to facilitate the development of
such algorithms. The different tools in the WDK create, make changes to, simulate and assess the performance
of activity recognition algorithms using the abstractions in the repository. Applications running on wearable
devices rely on the runtime components to execute the activity recognition algorithms created with the WDK.

Dr. Juan Haladjian - A Development Platform for Wearable Devices 2

Matlab

Runtime Components

Event
 Detection

Preprocessing

Classification
Feature

 Extraction

Segmentation
Postprocessing

Development Components

Labeling Validation

File
 Management

Assessment
<<tool>>

Development
<<tool>>

Analysis
<<tool>>

Annotation
<<tool>>

Wearable App 2
<<application>>

Wearable App 1
<<application>>

Wearable App 3
<<application>>

Repository

Development
Utilities

Runtime
 Utilities

Fig. 2. The WDK is based on a repository architecture. The different tools in the WDK use the repository to create activity
recognition algorithms which are executed by applications running on a wearable device.

The main design goal that drove our decision for this architecture was the extensibility goal. The repository
architecture decouples the reusable components from the tools, enabling the components to be reused indepen-
dently of the tools and the tools to be extended without changes to the reusable components. It also decouples the
different tools from each other, as they interact only indirectly through the repository. This facilitates extending
each tool without affecting the other tools. In addition, decoupling the runtime components from the rest of the
toolkit eases their reuse by the wearable applications.

The decision to base the WDK on Matlab was mainly driven by the low entrance barrier goal. Matlab facilitates
data analysis tasks with a broad set of functionality and native language semantics to perform arithmetic,
statistical and signal processing operations on multi-dimensional arrays of data. This functionality can be used in

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:7

combination with the set of reusable components in the WDK to manipulate and process data. Another alternative
would have been Python in combination with third-party libraries such as NumPy, Matplotlib, TensorFlow and
Keras.

3.3 Reusable Components
Other toolkits have lowered the entrance barrier to the development of different applications by hiding implemen-
tation details behind high-level components. Similarly, the WDK provides a set of high-level reusable components
with functionality commonly used across activity recognition applications. To reuse a component, developers
don’t have to understand its implementation, but only what it does and what data types it requires and produces.

Component Type Input Output Used to. . .

Ru
nt
im

e

Preprocessing Signal Signal transform a Signal and prepare it for further processing
Event Detection Signal Events detect the occurrence of specific events (e.g., peaks) in a Signal
Segmentation Signal / Events Segments divide a Signal into regions of interest
Feature Extraction Segments FeaturesTable compute time or frequency-domain features of a Signal
Classification FeaturesTable ClassificationResult predict a label for each feature vector in a FeaturesTable
Postprocessing ClassificationResult ClassificationResult add, remove or alter labels in a sequence of predicted labels
Utilities multiple multiple split, merge or transform data (e.g., extract values from a Signal)

D
ev
el
op

m
en
t File Management N/A multiple load and parse a data file or an annotations file

Labeling Segments Segments assign Labels to Events or Segments using an annotations file
Validation FeaturesTable ClassificationResult train and evaluate a machine learning classifier
Utilities multiple multiple different functions used at development time (e.g., feature selection)

Table 1. Summary of the functionality in the WDK’s repository. Signals are two-dimensional arrays of floating-point values.
Events represent a specific sample in a Signal and store an integer timestamp and a floating-point value. Segments represent
a range of samples in a Signal and contain a two-dimensional array of floating-point values and the start and end indices in
the original Signal. FeaturesTables are two-dimensional arrays of floating-point features and an 8-bit integer label column.
ClassificationResults are arrays of 8-bit integer labels predicted by a machine learning classifier.

Table 1 provides a summary of the reusable components in the WDK and the data types they take as input
and produce as output. The runtime components encapsulate methods for each stage of the Activity Recognition
Chain [7], including: preprocessing, event detection, segmentation, feature extraction, classification and post-
processing. The development components offer functionality needed to manipulate the data used by the runtime
components, label the segments produced by a segmentation algorithm and validate machine learning classifiers.
Most of the preprocessing, feature extraction, classification and validation algorithms are standard off-the-shelf
methods commonly used in activity recognition and offered by Matlab. In contrast, most of the event detection,
segmentation, labeling and postprocessing components are our own implementations of less common algorithms
described in different scientific papers [6, 7, 10, 14, 45] or derived from our own previous work. A full list of the
components offered by the WDK until the date of submission of this article is available in the Appendix.
The set of reusable components is designed as a modular object-oriented architecture based on a pipes and

filter architectural style. The reusable components act as filters: they receive data, process it and pass it over to
other components. Developers create recognition algorithms by instantiating components and connecting them
together. An algorithm is represented as a directed graph and executed with a stack in a depth-first order. To
extend the functionality available in the repository, developers only have to subclass the Computer class and
implement its compute method.

3.4 Tools
The WDK offers four tools to support the main tasks in the development lifecycle of an activity recognition
application: the Annotation tool is used to annotate a time series data set, the Analysis tool provides a way to

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:8 • Juan Haladjian

study the data and segments produced by a segmentation algorithm, the Development tool enables the creation
of activity recognition algorithms with the set of components and the Assessment tool is used to evaluate the
runtime performance of a recognition algorithm.
The Annotation tool is used to add annotations to a multi-dimensional time series signal. The tool supports

two kinds of annotations: event annotations and range annotations. Event annotations correspond to events that
occur at specific moments in time (i.e., a single timestamp) and range annotations correspond to activities that
have a duration in time (i.e., two timestamps indicating start and an end of the activity). Both annotation types
can be used simultaneously.

Fig. 3. The Annotation tool displays the squared magnitude of the accelerometer signal collected by a motion sensor attached
to a cow. The individual strides of the cow have been annotated as event annotations (red) and the walking and running
activities as range annotations (black rectangles).

Video is commonly used as a reference to annotate collected wearable sensor data. The Annotation tool displays
video and data next to each other and automatically updates the current video frame to the current data selection
and vice-versa. Users synchronize video and data once by providing two video frames and two data timestamps
which correspond to the same event. In addition, external markers can be displayed on top of the data when
annotations are performed in real time (i.e., during the data collection) or using external video annotation
software.
The Analysis tool provides insight into the behavior of an activity recognition algorithm by displaying the

segments produced by it. To this end, developers design an activity recognition algorithm either directly over the
user interface of the Analysis tool or by importing it from the Development tool. The segments produced by the
algorithm are then labeled, grouped by activity and shown to the user. A visualization strategy can display the
segments next to each other, as shown in Figure 4, or on top of each other to help spot the pattern or signature of

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:9

a particular activity. A particular kind of recognition algorithm generates segments from the annotations, which
can be helpful to review the annotations and to gain insight into the patterns the algorithm should recognize.

Fig. 4. The Analysis tool shows segments produced by a recognition algorithm corresponding to different physical rehabilita-
tion exercises performed by patients after a hip replacement surgery.

The Development tool is a visual programming interface to enable less experienced users to create applications
by reusing the components in the WDK. To this end, we extended Node-RED, a popular flow-based programming
platform with a Javascript implementation of each reusable component. This implementation is available in a
separate open source repository3. Algorithms created in Node-RED can be imported and executed in the different
tools of the WDK. Figure 5 shows a simple activity recognition algorithm developed with the Development tool.

Fig. 5. Activity recognition algorithm developed in the Development tool. The algorithm generates consecutive segments of a
one-dimensional signal using a SlidingWindow. For each segment, it extracts the mean, standard deviation and zero-crossing
rate features. The featureExtractor groups the three features into a FeaturesTable, which is passed as input to a KNN classifier.

The Assessment tool enables the assessment of activity recognition algorithms regarding their recognition and
computational performance. To this end, the WDK simulates the execution of an activity recognition algorithm
and computes different metrics. The recognition performance of an algorithm is quantified by the following
metrics: accuracy, precision, recall, F1-Score and confusion matrix. These metrics are calculated per data file and
activity (i.e., class). The computational performance is quantified with three cost metrics: execution, memory and
communication costs. To enable developers to compare different architectures of their wearable systems, the WDK
estimates these metrics for each stage of a recognition algorithm. These metrics are averaged across data files and
displayed over the user interface for each algorithm execution. Next subsection describes how the computational
performance metrics are computed.

3https://github.com/avenix/WDK-RED

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:10 • Juan Haladjian

3.5 Computational Performance Assessment
Every reusable component in the WDK computes three computational performance metrics: execution, memory
and communication cost. The execution cost is an estimation of the number of floating point operations performed
by the recognition algorithm normalized by the amount of data samples provided as input. The memory cost
is an estimation of the maximum amount of memory required to execute a recognition algorithm. Execution
and memory costs are calculated at runtime by executing a recognition algorithm. Each reusable component
computes its execution and memory costs for a provided input based on the values of its properties at runtime.
The execution cost of an algorithm is then calculated by adding the execution costs returned by each reusable
component every time their compute method is invoked. The memory cost is calculated by adding the memory
cost returned by each component in a recognition algorithm once. The communication cost of an algorithm is
computed by adding up the amount of bytes produced by the last component in the algorithm. The execution,
memory and communication costs of each reusable component are listed in Section A in the Appendix.

3.6 Frame-by-frame analysis
Many activity recognition applications are evaluated with respect to time [7]. To provide further insight into the
recognition performance of an algorithm with respect to time, the Assessment tool displays a frame-by-frame
comparison between the ground truth and the classifier’s prediction on top of the raw data and reference video.
To this end, the WDK stores the list of labels predicted by a classification algorithm, feature vectors extracted
by a feature extraction algorithm, segments generated by a segmentation algorithm and signals produced by a
preprocessing algorithm. The start and end index of a segment are used to correlate predicted labels to original
annotations in the ground truth.

3.7 Cache
To enable the quick assessment of a recognition algorithm, the WDK stores the execution results of a recog-
nition algorithm in a cache under a hash-key that uniquely identifies the algorithm. This key is generated by
concatenating a description of each component used in the algorithm in depth-first order. The description of a
component is a string containing its name and the value assigned to each of its properties. Before executing a
particular algorithm, the WDK loads its execution results, in case these are available in the cache.

4 WALKTHROUGH: GOALIEGLOVE
This section describes step-by-step how to develop an algorithm to recognize the training exercises performed by
soccer goalkeepers including dives, catches and throws with an inertial sensor inserted into goalkeepers’ gloves.
The goal of this application is to give goalkeepers personalized feedback about their training.

4.1 Data collection
This application uses a data set collected from 7 goalkeepers during their training sessions using a sensor device
based on the ICM20948 9-axis Inertial Measurement Unit. To capture the full range of motion of exercises that
might contain high intensity impacts and rotations, the accelerometer, gyroscope and compass were set to their
maximum ranges: ±16 g, ±2000 dps and ±4900 µT respectively, as done in similar IMU-based sports applications
[6, 18, 53]. The sensor device collected data at 200 Hz and normalized it to the range [−1, 1]. Each training session
lasted an average of 33 minutes. The training sessions were recorded on video for annotation purposes. On
average, each video and data file in binary format had a size of 2.22 GB and 18.25 MB, respectively. To synchronize
the data and video, goalkeepers were asked to applaud three times in front of the camera between exercise sets.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:11

4.2 Data Annotation
This application aims at detecting sporadic events that have a high energy of motion. Previous work has detected
similar events by finding peaks on the (squared) magnitude of acceleration or gyroscope signals [6, 18, 23]. In
order to be able to assess the performance of a peak detection algorithm later on, we add an event annotation to
each peak in the magnitude of acceleration that corresponds to an exercise repetition. We also annotate other
motions with high accelerations performed often by goalkeepers such as ball passes and bouncing the ball on the
ground. Annotating these motions will enable us to train a classifier to filter these motions out in case they are
detected. The ground truth contains 4153 annotated motions, out of which 916 correspond to relevant exercise
repetitions and 3237 are instances of irrelevant motions.

4.3 Analysis
Most relevant exercises have a high intensity of acceleration. We know that high intensity accelerations can
be detected using a peak detector. Therefore, we use the Analysis tool to study the signal to determine how
to create segments of data around the peaks detected by a peak detector. Figure 6 shows the data around the
relevant events we annotated. We observe that the characteristic motion of most exercises starts approximately
200 samples before the peak and that most exercises end shortly after it. Furthermore, we observe that the relevant
motion previous to the peak might last longer than a second (200 samples) in some exercises such as the dives.
However, extending the segments to more than 200 samples before the peak would cause motion to be included
in the segment that is not characteristic of most exercises. Furthermore, longer segments increase the amount
of memory required by the device. Based on these observations, we decide to segment the signal according to:
[p − 200,p + 30].

Fig. 6. The Analysis tool displays the magnitude of acceleration of segments corresponding to different exercises plotted on
top of each other and grouped by their label. We marked the parts of the signal that contain motion characteristic of each
exercise with a green overlay. We used this visualization to devise an event detection and segmentation algorithm.

Fig. 7. The exercises performed by soccer goalkeepers can be divided in three sub-segments. The range [181, 230] (orange
overlay) corresponds to a ball or ground contact. The range [61, 180] (blue overlay) can provide information to determine
whether the exercise is a dive or a jump, as these exercises present more acceleration in this range than the other ones. The
range [1 − 60] (green overlay) can be used to recognize dives due to the arm swing goalkeepers perform before a dive.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:12 • Juan Haladjian

To decide what features should the algorithm extract for each segment, we study the characteristic motions of
the different exercises in the Analysis tool, as shown in Figure 7. Most exercises consist of sequences of motions.
For example, the Jump Catch Stand consists of a jump, a ball catch in the air and a ground contact. Based on this
analysis, we decide to divide segments in three sub-segments: [1, 60], [61, 180] and [181, 230] and extract a total
of 45 time-domain features including: Min, Max, Mean, Median, Variance, STD and AUC computed on different
axes of the accelerometer and magnetometer signals for each sub-segment.

4.4 Development
Next, we develop the algorithm shown in Listing 1 in a Matlab script. The algorithm first selects all three
accelerometer axes in the input Signal using the AxisSelector and passes the resulting Nx3 Signal to theMagnitude.
TheMagnitude computes the magnitude of each accelerometer vector in the input Signal and passes the computed
magnitude in an Nx1 Signal to the SimplePeakDetector. The SimplePeakDetector detects peaks in the magnitude
Signal and returns the Events of the detected peaks. The EventSegmentation generates Segments around the
detected peaks by extracting the 200 samples to the left of the detected peak and 30 samples to its right. The
Segments are passed to a FeatureExtractor (loaded from the features.mat file), which extracts the 45 features
mentioned in the previous subsection for each Segment and outputs a FeaturesTable. The FeatureNormalizer
normalizes the FeaturesTable so that each of its feature columns has zero mean and a standard deviation of 1 and
passes it to the SVMClassifier. The SVMClassifier returns the predicted labels in a ClassificationResult object.

%computes magnitude of acceleration
axisSelector = AxisSelector(1:3);
magnitude = Magnitude();

%minPeakHeight=0.8, minPeakDist=100
peakDetector = SimplePeakDetector(0.8,100);

%segments in the range: [p-200,p+30]
segmentation = EventSegmentation(200,30);

%loads feature extraction algorithm
featureExtractor =

DataLoader.LoadComputer('features.mat');

%computes normalization values and normalizes
featureNormalizer = FeatureNormalizer();
featureNormalizer.fit(trainTable);
featureNormalizer.normalize(trainTable);

%order=1, boxConstraint=1.0
classifier = SVMClassifier(1,1);
classifier.train(trainTable);

components = {axisSelector, magnitude, peakDetector,
segmentation, featureExtractor,
featureNormalizer, classifier};

algorithm =
Computer.ComputerWithSequence(components);

Listing 1. Algorithm to detect and classify soccer goalkeeper training exercises. The algorithm starts at the left and continues
at the right column. The trainTable variable in the right column has been generated with a similar sequence of computations,
excluding the featureNormalizer and classifier components and using an EventSegmentsLabeler after the segmentation.

4.5 Performance Assessment
After having developed the algorithm, we use the Assessment tool to assess and optimize its recognition perfor-
mance.We test different values for the propertiesminPeakHeiдht andminPeakDistance of the SimplePeakDetector.
Low values for these parameters might cause more irrelevant motions to be detected whereas high values might
cause relevant exercises to be missed. We use the frame-by-frame analysis to understand the effects of different
values for these parameters on the data set, as shown in Figure 8. After this analysis, we decide for the values:
minPeakHeiдht = 0.8 andminPeakDistance = 100. The SVMClassifier component configured as: (order = 1 and

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:13

boxConstraint = 1.0) achieves the highest performance with an accuracy of 81.8%, a precision of 81.4% and a
recall of 79.8%. Adapting the previous script to select subsets of features with the FeatureSelector component
reveals that up to 5 features can be excluded with a minimal drop in accuracy.

Fig. 8. The frame-by-frame analysis displays the results of a recognition algorithm on top of the magnitude of acceleration.
The algorithm detected four exercises (shown in green) and two irrelevant motions (shown in red). After this goalkeeper
performs a throw, the ball is passed back at him with high intensity, which is detected (as a false positive) by the algorithm.

The Assessment tool provides an overview of the computational performance of different architectures to run
this algorithm. If only the segmentation was done on the wearable device, 657.7 KB of data would have to be
transferred from the wearable device for an average training session. This is calculated by the WDK as an average
of 244 segments per training session with a size of 230x6 values each and using 2 bytes per value. If the feature
extraction was also performed on the wearable device, only 38,1 KB of data would be produced on average per
training (244 feature vectors with 40 features represented with 4 bytes each). Finally, if the classification was
also performed on the wearable device, only 2.1 KB of data would be generated (244 1-byte labels and an 8-byte
timestamp). The Assessment tool estimates a memory cost of 2.7 KB for the event detection, segmentation and
feature extraction stages - most of which corresponds to the EventSegmentation component which allocates a
matrix of 230x6 cells of 2 bytes per value.

5 REFERENCE APPLICATIONS
Ledo et al. [35] proposed four types of ways to evaluate toolkits: demonstration, usage, technical performance
and heuristics. Demonstration evaluations show how a toolkit is used to create applications. Usage evaluations
investigate the usability of a toolkit, often by means of user studies. Technical performance evaluations assess
the non-functional requirements of a toolkit such as the recognition accuracy of a created algorithm. A heuristics
evaluation investigates a toolkit’s usability with respect to a set of heuristics, such as Nielsen’s usability heuristics
[43, 44]. The previous section demonstrated the usage of the WDK with a step-by-step walkthrough to create an
application. This section demonstrates the WDK’s versatility to support different applications.
We created the WDK iteratively by extending and refining its abstractions to replicate different activity

recognition applications from the literature and from our previous work. These applications include: an algorithm
to classify daily activities presented by Bao and Intille [5], a smart bandage to track the rehabilitation progress of
patients after a knee injury [21, 25, 26], a chest belt strap band to recognize basketball defensive training exercises,
a lameness detection system for dairy cattle [23, 24], an activity tracker for pigs [22] and a sensor-based horse

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:14 • Juan Haladjian

gait and jump detection system for show jumping applications [12, 13]. Next, we demonstrate how two of these
applications are developed using the reusable components in the WDK.

5.1 Daily Activity Monitoring
Listing 2 replicates the activity recognition algorithm presented by Bao and Intille [5]. This algorithm recognizes
physical activities (e.g., walking, sitting, eating) using two-axis accelerometers worn on different parts of the
body. The algorithm processes a stream of sensor values in Segments of 512 samples with 50% overlapping
using the SlidingWindowSegmentation. The SlidingWindowSegmentation passes Segments of 512x2 samples to
a FeatureExtractor. The FeatureExtractor computes a feature vector for each segment it receives as input and
appends it to a FeaturesTable. Each feature vector contains the mean, spectral entropy and spectral energy of
both accelerometer axes and the correlation between the two axes. FeaturesTables output by the FeatureExtractor
are passed to the TreeClassifier, which returns an array of labels in a ClassificationResult.

%segmentSize=512, 50% overlapping
slidingWindow =

SlidingWindowSegmentation(512,256);

%creates feature extraction algorithm
featureExtractor =

createFeatureExtractor();

%maxNumSplits=30
classifier = TreeClassifier(30);

%creates algorithm
algorithm =

Computer.ComputerWithSequence({
slidingWindow, featureExtractor,
classifier});

function featureExtractor = createFeatureExtractor()
fftFeatures = FFT();
fftFeatures.addNextComputers({SpectralEntropy(),

SpectralEnergy()});
featureComputers = {Mean(),fftFeatures};

%extract features on accelerometer axes x and y
axis1 = AxisSelector(1);%x-axis
axis2 = AxisSelector(2);%y-axis
axis1.addNextComputers(featureComputers);
axis2.addNextComputers(featureComputers);

%returns feature extraction algorithm
featureExtractor = FeatureExtractor({axis1,axis2,

Correlation()});
end

Listing 2. Algorithm to classify daily activities proposed by Bao and Intille [5] reproduced with the WDK’s components.

5.2 Hip Rehabilitation App
The Hip Rehabilitation App (HipRApp) is a wearable strap band to track the rehabilitation progress of patients who
underwent a hip replacement surgery. It counts the amount of exercise repetitions and walking steps performed
by patients during a training session. The algorithm shown in Listing 3 recognizes exercise repetitions in a stream
of samples produced by a 6-axis inertial sensor (accelerometer and gyroscope) worn by patients at the ankle.
First, the AxisSelector extracts the accelerometer axes from the input data into an Nx3 Signal. The LowPassFilter
applies a Butterworth low-pass filter to each of the Signal’s columns to eliminate high-frequency noise in the
accelerometer signal. The filtered data is processed using a sliding window. For each Segment produced by the
SlidingWindowSegmentation, the Min, Max, Mean, Median, Variance, STD, AUC, AAV, MAD, IQR, RMS, Skewness
and Kurtosis are computed. These features are extracted on every axis of the accelerometer and gyroscope Signals
and aggregated by the FeatureExtractor into a FeaturesTable. The FeatureNormalizer normalizes FeaturesTables
and passes them to the KNNClassifier. The KNNClassifier predicts a label for each row in a FeaturesTable and
returns a ClassificationResult containing an array of predicted labels. Finally, the SlidingWindowMaxLabelSelector

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:15

post-processing component replaces every label at index labelIndex in the array of predicted labels with the
most frequent label in the range [labelIndex − 3, labelIndex + 3], or with the NULL-class if no label occurs at
least 4 times in the range. This is done to ’favor’ the most frequent label within a 6-label window and avoid the
sporadic misclassification of unrelated exercises or instances of the NULL-class. This increases the recognition
accuracy due to the fact that patients usually perform 10 to 20 repetitions of an exercise in a row.

%select signals 1,2,3 (accelerometer x,y,z)
axisSelector = AxisSelector(1:3);

%order=1, cutoff=20Hz
lowPassFilter = LowPassFilter(1,20);

%segmentSize=488, 50% overlapping
segmentation =

SlidingWindowSegmentation(488,244);

%max, min, etc. on signals 1,2,3,4,5 and 6
features =

FeatureExtractor.DefaultFeatures();
featureExtractor =

FeatureExtractor(features,1:6);

%computes normalization values
featureNormalizer = FeatureNormalizer();

%k=10, distanceMetric='euclidean'
classifier = KNNClassifier(10,'euclidean');

%windowSize=6, minimumCount=4
postprocessor = LabelSlidingWindowMaxSelector(6,4);

%creates algorithm
components = {axisSelector, lowPassFilter,

segmentation, featureExtractor,
featureNormalizer, classifier, postprocessor};

algorithm =
Computer.ComputerWithSequence(components);

Listing 3. Algorithm to classify rehabilitation exercises performed by patients of hip replacement. The algorithm starts in
the left column and continues in the right. In a separate script, the classifier is trained and the featureNormalizer is fit with
normalization values.

5.3 Discussion
The incremental development process we used to create the WDK enabled us to assess its coverage of the
functionality present in a variety of applications and to refine it accordingly. The applications presented in this
section demonstrate the WDK’s versatility to different domains and illustrate that complex activity recognition
algorithms can be created with a few components in the WDK.

6 USABILITY EVALUATION
To study the usability of the WDK, we conducted a user study with three participants who used the WDK to
create different applications, as summarized in Table 2. The participants were students of computer science at the
Technical University of Munich who contacted us to write a bachelor’s or master’s thesis at our department after
they read a project description on our department’s website. None of them had previous experience in activity
recognition or in Matlab. They were instructed to develop an application using the WDK during a period of two
to four months. After the development phase, we conducted an semi-structured interview where the participants
described their experiences using the WDK and demonstrated to us how they had used it.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:16 • Juan Haladjian

Participant Gender Application
P1 Male GoalieGlove
P2 Male Recognition of basketball defensive training exercises
P3 Female HipRApp

Table 2. Participants of the first user study and applications they developed using the WDK.

All three participants found the functionality to annotate data while looking at the video useful. P3 said: “The
Annotation tool is very useful because everything is in the same place. I was using DaVinci Resolve for the annotations
in the video but that was a lot of back and forth switching”4. The participants also praised the functionality to
compare the segments produced by an algorithm in theAnalysis tool. In particular, theywelcomed the functionality
to quickly switch between signals to design feature extraction [P2,P3] and event detection algorithms [P1,P2]. P1
said: “It’s good to compare different players: what segments are too small and which ones are too big”. Furthermore,
every participant reported that they found the frame-by-frame comparison in the Assessment tool useful in their
projects. Notably, P2 mentioned that he had been using wrongly annotated data for months until he observed a
contiguous sequence of misclassified exercises in the frame-by-frame comparison. He described the insights he
gained as: “if we go frame-by-frame, then we can see that longer strides have a longer intensity and that the player is
lean forward a bit more. That explains that instance A was detected and not instance B”. Furthermore, P2 and P3
mentioned that they could save time by reusing functionality available in the WDK. P3 said: “I had to implement
a lot of machine learning algorithms in Python. Here you can reuse a lot of functionality”.

While using the WDK, the participants also mentioned different issues, bugs and feature requests. Two main
issues they mentioned were the difficulty to identify the root of an error in a recognition algorithm they had
developed and the difficulty to understand some of the reusable components in the WDK. Errors when executing
a recognition algorithm were caused when two reusable components were connected to each other, although
the data type produced by the predecessor component was not compatible with the input type required by the
successor component. P1 said: “If something fails, you don’t know what went wrong”. Furthermore, when executing
an invalid algorithm, Matlab displays an error message containing the execution stack trace. Although the first
line in the stack trace contained the name of the reusable component that caused the failure, the participants did
not find this information helpful to identify the root of errors. Based on this feedback, we introduced a major
change to the reusable components to prevent developers from connecting two incompatible components to
each other. To this end, every reusable component now specifies a meta-data describing the type of its input and
output parameters. The output type of a component is used to determine whether it can be connected to another
component. At runtime, the reusable components print an error message when they receive an incompatible
object as input and return an empty object, which causes the execution of an algorithm to stop. Furthermore, we
adapted the user interfaces of every tool in the WDK to dynamically adapt the reusable components developers
can choose from at each stage of the recognition pipeline based on the components selected at the previous
stages.

Participants P1 and P3 also mentioned that they did not understand some of the reusable components available
in the WDK, such as the ManualSegmentation and the different components to label events and segments. P1
said: “The Labeling is not clear what it does” and also pointed out that he did not know what the LabelMapper
was for. P3 reported that she did not know how to “get to a segment from an event”, which can be done with
the EventSegmentation. To address this issue, we documented every reusable component in the WDK’s GitHub
website. For each reusable component, the documentation describes the type of input it requires and output it
produces.

4DaVinci Resolve is a video editing and annotation tool: https://www.blackmagicdesign.com/products/davinciresolve/

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:17

The participants also mentioned several minor issues. When using the Annotation tool, the participants
mentioned the loss of annotations because of closing the window without saving them beforehand [P2], the lack
of information regarding what signals were being produced when a preprocessing algorithm was executed [P3],
the lack of a legend to indicate how computed signals mapped to colors in the plot [P3] and the difficulty to
recognize a data selection due to the similarity of the colors used to plot data and to select a range of data [P1,P3].
Regarding the Analysis tool, the participants pointed out that the tool was too ’laggy’ when zooming into a plot
with more than 400 segments [P1, P2], the lack of feedback to indicate that a time-intensive computation had
finished [P1], that there was no way to know which table was editable and which one was not [P1] and that the
labels shown above each list box were not consistent, as some of them were numbered and others were not [P3].
P2 also requested a feature to plot different signals without having to reset the zoom level of the plots. In the
Assessment tool, the participants had difficulties to create a feature extraction algorithm. This was due to a lack
of consistency between the user interfaces to reuse components in the different stages: for the preprocessing,
segmentation, classification and validation stages, a single reusable component had to be selected from the user
interface, whereas feature extraction algorithms had to be created by selecting multiple components and defining
on which signal each of them were to be computed. P2 and P3 also noted a lack of consistency in the user interface
to select features, which required developers to have executed a recognition algorithm once before a subset
of features could be selected, but provided no indication about this restriction over the user interface. In the
detail view of the Assessment tool, P2 and P3 criticized that the results of the recognition were not always visible
depending on the zoom level of the plot that displays the data. We performed several minor changes to improve
the usability of our toolkit based on the issues mentioned by the participants.
To assess the usability of the improved version of the WDK, we conducted a second user study with two

engineers from the industry. To this end, we contacted two companies located in Munich that had collaborated
with our research lab in the past and asked them to participate in our user study. The first participant (P1)
was a senior software engineer (33 years old) working at a startup that offers professional coaching to soccer
goalkeepers. The second participant (P2) was a recent graduate of computer science (25 years old) working as a
data scientist in a startup specialized in wearable electronics. Both participants had previous experience with
activity recognition. P1 had used mostly Matlab and had only passing experience in Python and P2 had two years
of experience in Python and was familiar with the Node-RED platform but had no experience in Matlab.
We gave the participants specific tasks to solve with the WDK while thinking out-loud using the data from

the GoalieGlove application. The tasks included annotating a data set with event and range annotations, finding
outliers in the annotated data set, comparing the different signals (accelerometer, gyroscope and magnetometer)
corresponding to two exercises, discussing possible feature extraction algorithms based on the exercise signatures,
developing the algorithm we presented in Section 4 and assessing its recognition performance. After solving
these tasks, we conducted an unstructured interview with the participants to inquire about their impression
using the WDK. Finally, the participants were given a questionnaire with seven 5-point Likert scale questions.
Each session lasted approximately 90 minutes. Table 3 shows the questionnaire we asked and the participant’s
answers.
The ease to understand the reusable components in the WDK was rated 4 by P1 and 3 by P2. While the

participants understood how to instantiate components and connect them together in the Development tool and
in the code, they acknowledged the need to refer to the documentation to understand the functionality behind the
different components. P1 said: “I am not sure what all of these do, but I am sure you will have some documentation”.
P2 had difficulties to understand how to combine the event detection and segmentation components: “Obviously
you need some user manual to know that SimplePeakDetector works with the EventSegmentation” but had no
difficulty reusing the feature extraction and classification components.

We found that both participants were quickly able to understand what event and range annotations are and to
annotate a data set using the Annotation tool. They welcomed the Annotation tool and mentioned that they were

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:18 • Juan Haladjian

Question P1 P2
Q1 Do you find the reusable components in the WDK easy to understand? 4 3
Q2 Do you find the tools in the WDK easy to use? 4 4
Q3 Do you find the WDK useful to annotate your data? 5 5
Q4 Do you find the WDK useful to study your data set? 5 4
Q5 Do you find the WDK useful to develop a recognition algorithm? 4 5
Q6 Do you find the WDK useful to assess the performance of a recognition algorithm? 5 4
Q7 How likely are you to use the WDK within your organization? 5 5

Table 3. Questionnaire and answers of participants of the second study. The scales were: 1 (very difficult) to 5 (very easy) for
Q1 and Q2; 1 (useless) to 5 (very useful) for Q3-Q6 and 1 (very unlikely) to 5 (very likely) for Q7.

not aware of other free annotation tools for time series that display video files next to the data. Both participants
rated the WDK’s usefulness to annotate data with a 5 (very useful). We also observed that the participants could
use the Analysis tool without issues to display the annotated data. They quickly found outlier motions in the
annotations and discussed possible feature extraction algorithms based on the data. Both participants found the
tool useful to make sense of their data sets and design feature extraction algorithms. P1 said: “The Analysis App is
the most useful tool because it helps you see what’s going on with the data. It helps you choose the features because
you can see patterns in the data and on which axes to calculate the feature”. The participants rated the WDK’s
usefulness to study their data sets with a 5 (P1) and a 4 (P2).
Both participants rated the WDK’s usefulness to assess the performance of a recognition algorithm with a

score of 5 (P1) and 4 (P2). In particular, the functionality to display the recognition results on top of the raw data
in the frame-by-frame analysis was identified as the most convenient feature. P2 said: “the part of the assessment
can differentiate [the WDK] from other tools. [...] if you see a confusion matrix you see it misclassifies these exercises
but you don’t have a clue why [...]. It can help a lot to see the video and see that because of this it was not properly
predicted and see that together with the data”.

Both participants praised the WDK and rated how likely they were to use it within their organizations with a
5 (very likely). P2 said: “there are no tools that are publicly available to developers so they create their own software
[...] or they just do it intuitively by using standard parameters trusting they will work for their specific problem. With
this tool I can see the data with different parameters and decide”. On the other hand, both participants pointed out
Matlab license fees as an issue and mentioned that their organizations would not be willing to afford the fees.

6.1 Discussion
Based on what we observed, we feel confident that the WDK can significantly lower the entrance barrier to
the development of activity recognition applications. The participants of our studies mentioned that they were
not aware of similar tools and found the WDK useful to automatize their development tasks. In particular, they
praised the ability to reuse a broad set of existing functionality in their own applications. The features perceived
to be the most useful by the participants are the functionality to annotate the data together with the video in the
Annotation tool, to quickly assess and optimize the parameters of different algorithms and the frame-by-frame
analysis to correlate the recognition results to the original data and reference video.
Furthermore, the participants of the user studies mentioned the difficulty to understand some reusable com-

ponents. While the WDK enables the reuse of high-level components without having to understand their
implementation details, developers still need to 1) be familiar with the Activity Recognition Chain and 2) un-
derstand the function, inputs and output produced by the components in the WDK. However, we believe that
understanding and reusing the components in the WDK is significantly less time consuming than implementing

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:19

a recognition algorithm without them. To facilitate learning the Activity Recognition Chain as well as the
abstractions behind the WDK, we recently created a tutorial on activity recognition that relies on the reusable
components in the WDK5. We found that most developers with no experience in activity recognition are able
to finish the tutorial in a few hours and that they have less questions and are more effective at using the WDK
afterwards.

In addition, both engineers from the second user study pointed out Matlab’s license fees as a main limitation
and suggested Python as a free alternative. In the future, the components theWDK offers could be re-implemented
in Python or C++, or a combination of both. A C++ implementation of the runtime components would avoid
differences between the execution of algorithms in the development environment and target device and is likely
to lead to better execution performance. The current design of the WDK can be reused in future implementations.

7 CONCLUSIONS
This paper presented a toolkit to facilitate the development of activity recognition applications with wearables. In
contrast to previous work, theWDK supports different tasks in the development lifecycle of an activity recognition
application, such as the annotation and analysis of data and the development and performance assessment of an
algorithm. Supporting these tasks within a single environment facilitates an iterative development process which
is often necessary because developers rarely know upfront how to design activity recognition systems but rather
develop them iteratively. To ensure the versatility of the toolkit, we developed it incrementally based on a variety
of applications from different domains including sports, health, animal welfare and daily activity monitoring. We
also collected feedback from different users with varying levels of experience in activity recognition and adapted
the WDK to ensure it meets their needs.

One aspect we haven’t studied until now is how well the execution and memory costs computed by the WDK
correlate to the amount of floating point operations and memory an actual algorithm implementation in the
target device would require. As these metrics depend on the target device, its architecture and drivers, estimating
them accurately at development time can be challenging. However, the costs estimated by the WDK provide a
rough estimate that can be used to compare two or more algorithms to each other and make decisions early in the
development lifecycle of an activity recognition application. Furthermore, the execution andmemory costs of each
reusable component can be adapted to a specific benchmark by modifying two lines of code in each component.

Furthermore, the current version of the WDK is limited to local computations. If the scale of the data exceeds
what is physically possible to compute in a reasonable amount of time on a local device, developers might need
to use remote computing power. Future work could extend the WDK to enable the simulation and assessment of
activity recognition algorithms in parallel. To this end, every stage until the classification stage could be executed
in parallel for the different input data files.

Despite the variety of reusable components and functionality already available in the WDK, the toolkit is far
from finished. We are still extending its set of reusable components, refactoring its code, improving its usability
and documenting it. A particular feature we are working on is the deployment of recognition algorithms into
wearable devices. Our vision is to do so by sending an algorithm configuration wirelessly, without recompiling
and flashing a firmware. To this end, we are currently porting the WDK’s runtime components to C++.
We also haven’t studied how to support application developers at creating applications that rely on activity

recognition algorithms. We believe that many applications handle recognition results in similar ways. For example,
they keep track of a training performance over time and compare the training performances among users. Future
work could identify patterns of usage of recognized activities within applications and facilitate their development.

While the WDK eases the effort to develop recognition algorithms, these still need to be crafted manually.
Different groups are investigating how to avoid this manual effort by adapting artificial neural networks to activity

5https://github.com/avenix/ARC-Tutorial

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:20 • Juan Haladjian

recognition applications with wearables [41, 60]. We are currently studying how to automatize the development
of recognition algorithms by means of generative design. In generative design, the assembly of activity recognition
algorithms is formulated as an optimization problem where the recognition performance (e.g., F1-Score) is
used as an optimization metric and the computational requirements (e.g., memory, energy consumption) derive
into constraints to the optimization. The reusable components in the WDK and the functionality to assess the
performance of an algorithm represent a first step towards the realization of this idea.

ACKNOWLEDGMENTS
This work would not have been possible without the support from Prof. Bernd Brügge and Prof. Dan Siewiorek
over the last two years. The author would also like to thank Prof. Oliver Amft and Prof. Antonio Krügger for
allowing this work to be presented at their research labs and providing valuable ideas to improve the WDK.

REFERENCES
[1] Oliver Amft. 2010. A wearable earpad sensor for chewing monitoring. In SENSORS, 2010 IEEE. IEEE, 222–227.
[2] Daniel Ashbrook and Thad Starner. 2010. MAGIC: a motion gesture design tool. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. ACM, 2159–2168.
[3] Rafael Ballagas and Faraz Memon. 2007. iStuff mobile: rapidly prototyping new mobile phone interfaces for ubiquitous computing.

Proceedings of the SIGCHI conference on Human factors in computing systems (2007), 1107–1116. https://doi.org/10.1145/1240624.1240793
[4] David Bannach, Oliver Amft, and Paul Lukowicz. 2008. Rapid Prototyping of Activity Recognition Applications. IEEE Pervasive

Computing 7, 2 (apr 2008), 22–31. https://doi.org/10.1109/MPRV.2008.36
[5] Ling Bao and Stephen S Intille. 2004. Activity recognition from user-annotated acceleration data. In International conference on pervasive

computing. Springer, 1–17.
[6] Peter Blank, Julian Hoßbach, Dominik Schuldhaus, and Bjoern M Eskofier. 2015. Sensor-based stroke detection and stroke type

classification in table tennis. In Proceedings of the 2015 ACM International Symposium on Wearable Computers. ACM, 93–100.
[7] Andreas Bulling, Ulf Blanke, and Bernt Schiele. 2014. A tutorial on human activity recognition using body-worn inertial sensors. ACM

Computing Surveys (CSUR) 46, 3 (2014), 33.
[8] Jay Chen, Karric Kwong, Dennis Chang, Jerry Luk, and Ruzena Bajcsy. 2006. Wearable sensors for reliable fall detection. In 2005 IEEE

Engineering in Medicine and Biology 27th Annual Conference. IEEE, 3551–3554.
[9] Pei-Yu Peggy Chi and Yang Li. 2015. Weave: Scripting cross-device wearable interaction. In Proceedings of the 33rd annual ACM conference

on human factors in computing systems. ACM, 3923–3932.
[10] Guglielmo Cola, Marco Avvenuti, Alessio Vecchio, Guang-Zhong Yang, and Benny Lo. 2015. An on-node processing approach for

anomaly detection in gait. IEEE Sensors Journal 15, 11 (2015), 6640–6649.
[11] Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. 2004. a CAPpella. In Proceedings of the 2004 conference on Human

factors in computing systems - CHI ’04. ACM Press, New York, New York, USA, 33–40. https://doi.org/10.1145/985692.985697
[12] Jessica Echterhoff, Juan Haladjian, and Bernd Brügge. 2018. Gait Analysis in Horse Sports. In Proceedings of the Fifth International

Conference on Animal-Computer Interaction. ACM, 3.
[13] Jessica Echterhoff, Juan Haladjian, and Bernd Brügge. 2018. Gait and Jump Classification in Modern Equestrian Sports. In Proceedings of

the 2018 ACM International Symposium on Wearable Computers. ACM, 88–91.
[14] Davide Figo, Pedro C Diniz, Diogo R Ferreira, and João M Cardoso. 2010. Preprocessing techniques for context recognition from

accelerometer data. Personal and Ubiquitous Computing 14, 7 (2010), 645–662.
[15] Francine Gemperle, Chris Kasabach, John Stivoric, Malcolm Bauer, and Richard Martin. 1998. Design for wearability. In digest of papers.

Second international symposium on wearable computers (cat. No. 98EX215). IEEE, 116–122.
[16] Nicholas Gillian and Joseph A Paradiso. 2014. The gesture recognition toolkit. The Journal of Machine Learning Research 15, 1 (2014),

3483–3487.
[17] Saul Greenberg and Chester Fitchett. 2001. Phidgets. In Proceedings of the 14th annual ACM symposium on User interface software and

technology - UIST ’01. ACM Press, New York, New York, USA, 209. https://doi.org/10.1145/502348.502388
[18] Benjamin H Groh, Martin Fleckenstein, Thomas Kautz, and Bjoern M Eskofier. 2017. Classification and visualization of skateboard

tricks using wearable sensors. Pervasive and Mobile Computing 40 (2017), 42–55.
[19] Tobias Grosse-Puppendahl, Yannick Berghoefer, Andreas Braun, Raphael Wimmer, and Arjan Kuijper. 2013. OpenCapSense: A rapid

prototyping toolkit for pervasive interaction using capacitive sensing. In 2013 IEEE International Conference on Pervasive Computing and
Communications (PerCom). IEEE, 152–159.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:21

[20] Juan Haladjian, Katharina Bredies, and Bernd Bruegge. 2016. Interactex: An integrated development environment for smart textiles. In
Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2016 ACM
International Symposium on Wearable Computers. ACM, 8–15. https://doi.org/10.1145/2971763.2971776

[21] Juan Haladjian, Katharina Bredies, and Bernd Bruegge. 2018. KneeHapp Textile: A Smart Textile System for Rehabilitation of Knee
Injuries. In Proceedings of the 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, 9–12.

[22] Juan Haladjian, Ayca Ermis, Zardosht Hodaie, and Bernd Brügge. 2017. iPig: Towards Tracking the Behavior of Free-roaming Pigs. In
Proceedings of the Fourth International Conference on Animal-Computer Interaction (ACI2017). ACM, New York, NY, USA, 10:1—-10:5.
https://doi.org/10.1145/3152130.3152145

[23] Juan Haladjian, Johannes Haug, Stefan Nüske, and Bernd Bruegge. 2018. A Wearable Sensor System for Lameness Detection in Dairy
Cattle. Multimodal Technologies and Interaction 2, 2 (2018), 27.

[24] Juan Haladjian, Zardosht Hodaie, Stefan Nüske, and Bernd Brügge. 2017. Gait Anomaly Detection in Dairy Cattle. In Proceedings of the
Fourth International Conference on Animal-Computer Interaction (ACI2017). ACM, New York, NY, USA, 8:1—-8:8. https://doi.org/10.1145/
3152130.3152135

[25] Juan Haladjian, Zardosht Hodaie, Han Xu, Mertcan Yigin, Bernd Bruegge, Markus Fink, and Juergen Hoeher. 2015. KneeHapp: A
Bandage for Rehabilitation of Knee Injuries. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers. ACM, 181–184.

[26] Juan Haladjian, Constantin Scheuermann, Katharina Bredies, and Bernd Bruegge. 2017. A Smart Textile Sleeve for Rehabilitation of
Knee Injuries. In Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of
the 2017 ACM International Symposium on Wearable Computers (UbiComp ’17). ACM, New York, NY, USA, 49–52. https://doi.org/10.
1145/3123024.3123151

[27] Björn Hartmann, Leith Abdulla, Manas Mittal, and Scott R. Klemmer. 2007. Authoring sensor-based interactions by demonstration with
direct manipulation and pattern recognition. Proceedings of the SIGCHI conference on Human factors in computing systems (CHI ’07)
(2007), 145–154. https://doi.org/10.1145/1240624.1240646

[28] Björn Hartmann, Scott R Klemmer, Michael Bernstein, Leith Abdulla, Brandon Burr, Avi Robinson-Mosher, and Jennifer Gee. 2006.
Reflective physical prototyping through integrated design, test, and analysis. In Proceedings of the 19th annual ACM symposium on User
interface software and technology. ACM, 299–308.

[29] Steven Houben, Connie Golsteijn, Sarah Gallacher, Rose Johnson, Saskia Bakker, Nicolai Marquardt, Licia Capra, and Yvonne Rogers.
2016. Physikit: Data engagement through physical ambient visualizations in the home. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems. ACM, 1608–1619.

[30] Steven Houben and Nicolai Marquardt. 2015. Watchconnect: A toolkit for prototyping smartwatch-centric cross-device applications. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 1247–1256.

[31] Bonifaz Kaufmann and Leah Buechley. 2010. Amarino: A Toolkit for the Rapid Prototyping of Mobile Ubiquitous Computing. In
Proceedings of the 12th International Conference on Human Computer Interaction with Mobile Devices and Services (MobileHCI ’10). ACM,
New York, NY, USA, 291–298. https://doi.org/10.1145/1851600.1851652

[32] Aftab Khan, James Nicholson, and Thomas Plötz. 2017. Activity Recognition for Quality Assessment of Batting Shots in Cricket using a
Hierarchical Representation. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 62.

[33] Travis Kirton, Sebastien Boring, Dominikus Baur, Lindsay MacDonald, and Sheelagh Carpendale. 2013. C4: a creative-coding API for
media, interaction and animation. In Proceedings of the 7th International Conference on Tangible, Embedded and Embodied Interaction.
ACM, 279–286.

[34] David Ledo, Fraser Anderson, Ryan Schmidt, Lora Oehlberg, Saul Greenberg, and Tovi Grossman. 2017. Pineal: Bringing Passive
Objects to Life with Embedded Mobile Devices. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM,
2583–2593.

[35] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg, and Saul Greenberg. 2018. Evaluation strategies for HCI
toolkit research. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 36.

[36] Johnny C. Lee, Daniel Avrahami, Scott E. Hudson, Jodi Forlizzi, Paul H. Dietz, and Darren Leigh. 2004. The calder toolkit. In Proceedings
of the 2004 conference on Designing interactive systems processes, practices, methods, and techniques - DIS ’04. ACM Press, New York, New
York, USA, 167–175. https://doi.org/10.1145/1013115.1013139

[37] Yang Li, Jason I Hong, and James A Landay. 2004. Topiary: a tool for prototyping location-enhanced applications. In Proceedings of the
17th annual ACM symposium on User interface software and technology. ACM, 217–226.

[38] Kent Lyons, Helene Brashear, Tracy Westeyn, Jung Soo Kim, and Thad Starner. 2007. Gart: The gesture and activity recognition toolkit.
In International Conference on Human-Computer Interaction. Springer, 718–727.

[39] Javier Marco, Eva Cerezo, and Sandra Baldassarri. 2012. ToyVision: a toolkit for prototyping tabletop tangible games. In Proceedings of
the 4th ACM SIGCHI symposium on Engineering interactive computing systems. ACM, 71–80.

[40] Amon Millner and Edward Baafi. 2011. Modkit: blending and extending approachable platforms for creating computer programs and
interactive objects. In Proceedings of the 10th International Conference on Interaction Design and Children. ACM, 250–253.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:22 • Juan Haladjian

[41] Vishvak S Murahari and Thomas Plötz. 2018. On attention models for human activity recognition. In Proceedings of the 2018 ACM
International Symposium on Wearable Computers. ACM, 100–103.

[42] Michael Nebeling, Theano Mintsi, Maria Husmann, and Moira Norrie. 2014. Interactive development of cross-device user interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2793–2802.

[43] J Nielsen. 1994. Usability Engineering. Academic Press Inc.
[44] Jakob Nielsen and Rolf Molich. 1990. Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI conference on Human factors in

computing systems. ACM, 249–256.
[45] Girish Palshikar and Others. 2009. Simple algorithms for peak detection in time-series. In Proc. 1st Int. Conf. Advanced Data Analysis,

Business Analytics and Intelligence, Vol. 122.
[46] Shyamal Patel, Delsey Sherrill, Richard Hughes, Todd Hester, Theresa Lie-Nemeth, Paolo Bonato, David Standaert, and Nancy Huggins.

2006. Analysis of the Severity of Dyskinesia in Patients with Parkinson’s Disease via Wearable Sensors. In International Workshop on
Wearable and Implantable Body Sensor Networks (BSN’06). IEEE, 123–126. https://doi.org/10.1109/BSN.2006.10

[47] Max Pfeiffer, Tim Duente, and Michael Rohs. 2016. Let your body move: a prototyping toolkit for wearable force feedback with electrical
muscle stimulation. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services.
ACM, 418–427.

[48] Raf Ramakers, Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2016. Retrofab: A design tool for retrofitting physical interfaces
using actuators, sensors and 3d printing. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM,
409–419.

[49] Raf Ramakers, Kashyap Todi, and Kris Luyten. 2015. PaperPulse: An Integrated Approach for Embedding Electronics in Paper
Designs. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI ’15 (2015), 2457–2466.
https://doi.org/10.1145/2702123.2702487

[50] Valkyrie Savage, Colin Chang, and Björn Hartmann. 2013. Sauron: embedded single-camera sensing of printed physical user interfaces.
In Proceedings of the 26th annual ACM symposium on User interface software and technology. ACM, 447–456.

[51] Valkyrie Savage, Sean Follmer, Jingyi Li, and Björn Hartmann. 2015. Makers’ Marks: Physical markup for designing and fabricating
functional objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. ACM, 103–108.

[52] Giovanni Schiboni and Oliver Amft. 2018. Automatic dietary monitoring using wearable accessories. In Seamless Healthcare Monitoring.
Springer, 369–412.

[53] Dominik Schuldhaus, Carolin Jakob, Constantin Zwick, Harald Koerger, and Bjoern M Eskofier. 2016. Your personal movie producer:
generating highlight videos in soccer using wearables. In Proceedings of the 2016 ACM International Symposium on Wearable Computers.
ACM, 80–83.

[54] Teddy Seyed, Alaa Azazi, Edwin Chan, Yuxi Wang, and Frank Maurer. 2015. Sod-toolkit: A toolkit for interactively prototyping and
developing multi-sensor, multi-device environments. In Proceedings of the 2015 International Conference on Interactive Tabletops &
Surfaces. ACM, 171–180.

[55] Akira Wakita and Yuki Anezaki. 2010. Intuino: an authoring tool for supporting the prototyping of organic interfaces. In Proceedings of
the 8th ACM Conference on Designing Interactive Systems. ACM, 179–188.

[56] Chiuan Wang, Hsuan-Ming Yeh, Bryan Wang, Te-Yen Wu, Hsin-Ruey Tsai, Rong-Hao Liang, Yi-Ping Hung, and Mike Y Chen. 2016.
CircuitStack: supporting rapid prototyping and evolution of electronic circuits. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology. ACM, 687–695.

[57] Tracy Westeyn, Helene Brashear, Amin Atrash, and Thad Starner. 2003. Georgia tech gesture toolkit: supporting experiments in gesture
recognition. In Proceedings of the 5th international conference on Multimodal interfaces. ACM, 85–92.

[58] Chi-Jui Wu, Steven Houben, and Nicolai Marquardt. 2017. Eaglesense: Tracking people and devices in interactive spaces using real-time
top-view depth-sensing. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 3929–3942.

[59] Jishuo Yang and Daniel Wigdor. 2014. Panelrama: enabling easy specification of cross-device web applications. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 2783–2792.

[60] Ming Zeng, Haoxiang Gao, Tong Yu, Ole J Mengshoel, Helge Langseth, Ian Lane, and Xiaobing Liu. 2018. Understanding and improving
recurrent networks for human activity recognition by continuous attention. In Proceedings of the 2018 ACM International Symposium on
Wearable Computers. ACM, 56–63.

[61] Bo Zhou, Harald Koerger, Markus Wirth, Constantin Zwick, Christine Martindale, Heber Cruz, Bjoern Eskofier, and Paul Lukowicz.
2016. Smart soccer shoe: monitoring foot-ball interaction with shoe integrated textile pressure sensor matrix. In Proceedings of the 2016
ACM International Symposium on Wearable Computers. ACM, 64–71.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:23

A APPENDIX
This section lists the reusable components in the WDK until the date of submission of this article. The first and
second columns of the tables provide the name and a description of each component. The execution, memory and
communication costs are abbreviated as Exec, Mem and Comm and described with respect to an input of size n.

Preprocessing Components Runtime Exec Mem
HighPassFilter Butterworth High-pass filter 13 ∗ o ∗ n *
LowPassFilter Butterworth Low-pass filter 31 ∗ o ∗ n *
Magnitude

√
ax (xi)2 + ay (xi)2 + az (xi)2 4 ∗ n *

SquaredMagnitude ax (xi)2 + ay (xi)2 + az (xi)2) 2 ∗ n *
Norm |ax (xi)| +

��ay (xi)�� + |az (xi)|) 2 ∗ n *
Derivative D ′

i (x) = (xi − xi+1)/δ and D ′′
i (x) = (xi−1 − xi + xi+1)/δ 2 40 ∗ n *

S1 max(xi − xi−1, ...,xi − xi−k) +max(xi − xi+1, ...,xi − xi+k)
2 40 ∗ k ∗ n n

S2 max(xi − xi−1, ...,xi − xi−k) +max(xi − xi+1, ...,xi − xi+k)
2k 203∗k ∗n n

Table 4. The preprocessing components produce n 32-bit floating-point values. The o variables in the HiдhPassFilter and
LowPassFilter refer to these components’ order property. The algorithms with a (*) in the memory field require O(1) memory
when their computationInPlace property is set to true or O(n) additional memory otherwise.

Event Detection Components Runtime Exec Mem
SimplePeakDetector Threshold-based peak detector 11 ∗ n 1
MatlabPeakDetector Matlab’s peak detector 1787 ∗ n n

Table 5. The event detection components produce either none or one 32-bit floating-point value.

Segmentation Components Runtime Exec Mem
SlidingWindow Extracts Segments ofwindowSize from the input Signal (n − s)/it s
EventSegmentation Creates Segments around the input Events 11 ∗ n l + r
ManualSegmentation Converts event and range annotations to Segments - -

Table 6. The segmentation components produce s or l + r values. The s , l , it and r variables in the Exec andMem columns
refer to these components’ seдmentSize , iterationSize , seдmentSizeLe f t and seдmentSizeRiдht properties, respectively.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:24 • Juan Haladjian

Time-domain Feature Extraction Components Runtime Exec Mem
Min Minimum value in the input Signal n 1
Max Maximum value in the input Signal n 1
Mean Average of every value in the input Signal n 1
Median Median of the values in the input Signal 15 ∗ n 1
Variance Variance of the input Signal 2 ∗ n 1
STD Standard Deviation of the values in the input Signal 2 ∗ n 1
ZCR Zero Crossing Rate of the input Signal 5 ∗ n 1

Skewness Skewness of the input Signal:
n∑
i=1

(
xi − x̄)

σ

)3
6 ∗ n 1

Kurtosis kurtosis of the input Signal:
n∑
i=1

(
xi − x̄)

σ

)4
6 ∗ n 1

IQR Interquartile Range of the values in the input Signal 57 ∗ n n
AUC Area under the curve (trapezoid rule) of the input Signal:

n−1∑
i=1

xi + xi+1
n

8 ∗ n 1

AAV Average Absolute Variation of the input Signal:
n−1∑
i=1

|xi − xi+1 |
n

5 ∗ n 1

Correlation Pearson correlation coefficient of the two input Signals 3 ∗ n n
Energy Sum of squared values of the input Signal 2 ∗ n 1

Entropy Entropy of the input signal:
n∑
i=1

pi log(pi) where pi are the probabil-
ity distribution values of the input Signal

n2 n

MAD Mean Absolute Deviation of the input Signal:
n∑
i=1

|xi − x̄ |
n

5 ∗ n 1

MaxCrossCorr Maximum of the cross correlation coefficients of two input Signals 161 ∗ n n
Octants Octant of each sample in the three input Signals 7 ∗ n 1
P2P Difference between max. and min. values of the input Signal 3 ∗ n 1
Quantile q cutpoints that separate the distribution of values in the input

Signal
3 ∗ n ∗
loд(n)

q

RMS Root Mean Squared of the input Signal:

√∑n
i=1 x

2
i

n
2 ∗ n 1

SMV Signal Vector Magnitude of a two-dimensional input Signal:
1
n

n∑
i=1

√
x2
i + y

2
i)

4 ∗ n 1

SMA Sum of absolute values of a one or two-dimensional input Signal:
n∑
i=1

n∑
j=1

��xi j ��
m ∗ n 1

Table 7. The time-domain feature extraction algorithms produce a single value except for theQuantile component, which
produces numQuantileParts values. The octant is defined as: Octant = 1 if x1,x2,x3 > 0 and Octant = 7 if x1,x2,x3 < 0.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition
Applications • 134:25

Frequency-domain Feature Extraction Components Runtime Exec Mem
FFT FFT of the input Signal n ∗ log(n) n
FFTDC DC component of FFT coefficients 1 1
MaxFrequency Largest Fourier coefficient n 1
PowerSpectrum Power spectrum of FFT coefficients 4 ∗ n n

SpectralCentroid Centroid of FFT coefficients:
∑n−1

i=1 ȳiyi∑n−1
i=1 yi

10 ∗ n 1

SpectralEnergy Squared sum of FFT coefficients:
n∑
i=1

ȳi
2 2 ∗ n 1

SpectralEntropy Entropy of the FFT coefficients: −
n∑
i=1

yi log 2(yi) 21 ∗ n 1

SpectralFlatness Flatness of the distribution of FFT coefficients:
n
√∏n

i=1 xi
1
n
∑n

i=1 x(n)
68 ∗ n 1

SpectralSpread Variance of the distribution of FFT coefficients 11 ∗ n 1

Table 8. The frequency-domain feature extraction components output a single value except for the FFT and PowerSpectrum
which produce n/2 and n values respectively. Every frequency-domain feature extraction component receives the Signal with
FFT coefficients produced by the FFT component as input.

Classification Components Runtime

LDClassifier Linear Discriminant classifier
TreeClassifier Decision tree classifier with properties:maxNumSplits
KNNClassifier K-NN classifier with properties: nNeiдhbors , distanceMetric
EnsembleClassifier Ensemble classifier with properties: nLearners
SVMClassifier Support Vector Machine classifier with properties: order , boxConstraint

Table 9. The classification components produce 9 bytes (a 1-byte label and an 8-byte timestamp). Their computational
performance depend strongly on their implementation.

Postprocessing Components Runtime Exec Mem
LabelMapper Transforms the array of labels in a ClassificationRe-

sult by mapping labels in the sourceLabelinд prop-
erty to labels in the tarдetLabelinд property

n n

LabelSlidingWindowMaxSelector Replaces every label at index labelIndex in a Clas-
sificationResult with the most frequent label in
the range [labelIndex −windowSize, labelIndex +
windowSize], or with the NULL-class if no label
occurs at leastminimumCount times in the range

1 1

Table 10. The postprocessing components produce 9 bytes (a 1-byte label and an 8-byte timestamp).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

134:26 • Juan Haladjian

Runtime Utility Components Runtime Exec Mem Comm
FeatureNormalizer Normalizes a FeaturesTable by subtracting each row from

themeans property and dividing it by the stds property
2 ∗ n 2 ∗ n n

ConstantMultiplier Multiplies an input Signal by the constant property n n n
Substraction Subtracts the second column from the first column of a two-

dimensional input Signal
2 ∗ n n n

AxisMerger Mergesm Signals of size n into an nxm Signal 3 ∗ n m ∗ n m ∗ n
AxisSelector Selects the axes columns of the provided input Signal - m ∗ n m ∗ n
RangeSelector Outputs a new Signal with the values in the range [rs ...re]

of the input Signal
2 ∗ n re −

rs
re −
rs

Table 11. Utility components available in the runtime components layer.

File Management Components Development

FilesLoader Loads and parses a data file (.csv or .mat) formats.
AnnotationsLoader Loads ans parses an annotations file (.txt format)

Table 12. The FilesLoader and AnnotationsLoader are convenience components used during development.

Labeling Components Development

EventsLabeler Labels Events as the closest event annotation under a specified tolerance
EventSegmentsLabeler Labels Segments extracted around a detected Event
RangeSegmentsLabeler Labels Segments based on range annotations

Table 13. The labeling components are methods to label the Events and Segments produced by a recognition algorithm.

Validation Components Development

HoldoutValidator Trains a classifier using the trainData and tests its with the testData
LeaveOneOutCrossValidator Applies the leave-one-subject-out cross-validation technique

Table 14. The validation components receive a set of FeaturesTables as input and produce a ClassificationResult.

Development Utility Components Development

FeatureExtractor Generates a FeaturesTable from an array of Segments
FeatureSelector Identifies the nFeatures most relevant features of a FeaturesTable
NoOp Outputs the input object without modification
PropertyGetter Outputs the property property of the input object
PropertySetter Sets the property property of the object in the node property to the input value
SegmentsGrouper Outputs the input Segments grouped by their class
TableRowSelector Removes every row of the input FeaturesTable with a label column not contained

in the selectedLabels property.

Table 15. Utility components available in development components layer of the repository.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 4, Article 134. Publication date: December 2019.

CHAPTER 6. PUBLICATIONS

6.2 Sensor-based Detection and Classification of Soc-
cer Goalkeeper Training Exercises

This publication presents a wearable device application that detects and recognizes
the training exercises performed by soccer goalkeepers (e.g. catches, throws, dives)
using a wearable motion sensor attached to the glove. We provide a comprehensive
literature review on similar activity recognition applications with wearable devices,
describe each computation performed to accurately detect training exercises, filter
out irrelevant motions detected (i.e. false positives) and determine the actual type of
exercise using a machine learning classifier.

The author of this Habilitation developed the activity recognition algorithm in-
cluding the collection of data during goalkeeper trainings, the development and as-
sessment of different recognition methods and wrote the article.

Authors Haladjian, J., Schlabbers, D., Taheri, S., Tharr, M., &
Bruegge, B.

Journal Transactions on Internet of Things (TIoT)
Number of Pages 14
Type Journal Article
Review Peer Reviewed (4 Reviewers)
Year 2019
DOI

68

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Sensor-based Detection and Classification of Soccer Goalkeeper Training
Exercises

JUAN HALADJIAN, Technical University Munich

DANIEL SCHLABBERS, Technical University Munich

SAJJAD TAHERI, Technical University Munich

MAX THARR, Technical University Munich

BERND BRUEGGE, Technical University Munich

Many goalkeeper trainees cannot afford a personal human coach. Hence, they could benefit from a virtual coach that provides
personalized feedback about the execution of their training exercises. As a first step towards this goal, we developed an algorithm to
detect and classify goalkeeper training exercises using a wearable inertial sensor attached to a goalkeeper glove. We collected data
from 14 goalkeeper trainees while performing a series of training exercises (e.g., dives, catches, throws). Our approach first detects the
exercises using an event detection algorithm based on a high-pass filter, a peak detector, and Dynamic Time Warping to detect and
eliminate irrelevant motion instances. Then, it extracts a set of statistical and heuristic features to describe the different exercises and
train a machine learning classifier. Our exercise detection approach retrieves 93.8% of the relevant exercises with 90.6% precision and
classifies the detected exercises with an accuracy of 96.5%. The exercises recognized by our algorithm can be used to compute further
qualitative metrics about individual exercise executions to provide goalkeepers with relevant feedback about their training.

CCS Concepts: • Human-centered computing → Personal digital assistants; • Hardware → Sensor devices and platforms;

Additional Key Words and Phrases: Soccer, goalkeeping, event detection, wearable sensor, activity recognition, signal processing,
machine learning, dynamic time warping

ACM Reference Format:
Juan Haladjian, Daniel Schlabbers, Sajjad Taheri, Max Tharr, and Bernd Bruegge. 2018. Sensor-based Detection and Classification of
Soccer Goalkeeper Training Exercises. ACM Trans. Internet Things 1, 1, Article 1 (November 2018), 20 pages. https://doi.org/0000001.
0000001

1 INTRODUCTION

Soccer is one of the most popular sports in the world with numerous professional and an even larger number of
non-professional practitioners. A soccer team consists of ten field players and a goalkeeper. Due to their unique role
within the team, goalkeepers undergo a different training than the rest of the players in the team. Goalkeepers train
a specific set of well-defined motions to consolidate them into muscle memory and lower their reaction time during

Authors’ addresses: Juan Haladjian, Technical University Munich, juan.haladjian@tum.de; Daniel Schlabbers, Technical University Munich, daniel.
schlabbers@tum.de; Sajjad Taheri, Technical University Munich, sajjad.taheri@tum.de; Max Tharr, Technical University Munich, max.tharr@tum.de;
Bernd Bruegge, Technical University Munich, bruegge@tum.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Haladjian, J. et al

(a) Dive High (b) Dive Low (c) Jump Catch

(d) Catch Body (e) Catch Ground (f) Catch Hand

(g) Throw High (h) Throw Low (i) Pass

Fig. 1. Goalkeeper training exercise variations.

a game. The correct execution of the exercises have a steep learning curve and can only be assessed by experienced
trainers.

Despite the importance of personalized feedback from a professional trainer, only older, more experienced goalkeepers
enrolled in a soccer club have access to a dedicated trainer. In contrast, most young goalkeeper trainees cannot afford a
personalized coach. The ultimate goal of our work is to realize a system based on an unobtrusive wearable sensor able
to provide personalized and objective feedback to goalkeepers automatically after or during a training session to help
them improve their skills.

A goalkeeper training session typically includes exercises to stop incoming balls (e.g., dives, catches, jumps) and
others to pass the ball at field players. Goalkeepers execute different variations of these exercises to learn the right
Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 3

movements—mostly involving the legs, torso and arms—to handle each incoming ball. For example, they execute a
different motion to catch balls thrown at their chest, belly and legs. They catch balls thrown at the chest with their
hands, wrap balls thrown at their belly between the hands and their chest and control lower balls on the ground using
their entire body. Figure 1 shows different variations of goalkeeper training exercises.

In this article, we present a smart glove and algorithm to automatically detect and keep track of goalkeeper training
exercises using a single inertial sensor. To the best of our knowledge, this application has not been studied previously.
The work we present enables goalkeepers to keep track of the training exercises they perform. Goalkeepers could get
an overview of the exercises performed by goalkeepers during the last days, weeks or months, which they could use to
plan future training sessions accordingly. More importantly, the ability to detect and classify training exercises is a first
step towards a virtual coach that extracts performance metrics from the recognized exercises and gives personalized
feedback to goalkeepers.

The high variability in the training exercises and individual execution of each exercise make this application extremely
challenging. A particular challenge we address is on filtering out irrelevant motions that originate from the high degree
of freedom in the movement of a goalkeeper’s hands. The development process and methods we describe in this article
can be reused in similar activity recognition applications.

This paper is structured as follows. Section 2 lists similar activity recognition applications and discusses the state
of the art in activity recognition with wearable sensors. In Section 3, we present our algorithm to detect and classify
goalkeeper training exercises using the signal produced by an inertial sensor. Section 4 presents the results of our
evaluation to quantify the performance of our detection and classification algorithms. In Section 5, we discuss the
results we obtained and in Section 6 we summarize our contribution and present future research directions towards the
realization of a virtual coach for soccer goalkeepers.

2 RELATED WORK

Activity recognition using wearable sensors has been a field of study for over two decades. In this period, a variety of
activity recognition applications have been developed that extract information about the user or her context using
sensor signals. This is done for several possible reasons: 1) to assess the performance and correctness of a physical
exercise of a patient or athlete, 2) to monitor a physiological parameter or activity over time, 3) to provide feedback to a
user about her actions and 4) to adapt a user interface to the user’s context. This section first provides a list of similar
activity recognition applications and then discusses the state of the art in recognition methods.

2.1 Activity Recognition Applications

Activity recognition applications developed so far can be grouped under different fields:

• Daily activity monitoring. One of the first activity recognition applications proposed by the research commu-
nity used inertial sensors to recognize daily activities (e.g. walking, jogging, standing, sitting) [Bao and Intille
2004; Tapia et al. 2004]. Since then, several applications have been studied including the automatic detection
of falls [Abbate et al. 2012; Chen et al. 2006] and the recognition and monitoring of dietary activities such as
drinking [Amft et al. 2005; Schiboni and Amft 2018] and chewing [Amft 2010; Amft et al. 2005].

• Medicine. Several studies have developed methods to segment strides and extract information from human
gait [Barth et al. 2015]. In particular, the gait of patients of Parkinson’s disease has been widely investigated by
different research groups [Mariani et al. 2013; Patel et al. 2009, 2006]. Activity recognition applications have also

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Haladjian, J. et al

been developed to extract objective performance metrics to support clinical assessment during rehabilitation and
physical therapy. Performance metrics include the angle of flexion of a leg and the stability while performing a
squat during rehabilitation after a knee surgery [Haladjian et al. 2018a, 2015].

• Sports. Wearable activity recognition applications in sports have been developed to detect and classify strokes
(i.e. serves) in table tennis [Blank et al. 2015] and in tennis [Yang et al. 2017], determine the part of the shoe
used to kick a ball in soccer [Zhou et al. 2016], classify tricks in skateboarding [Groh et al. 2017a], compute
the velocity and the length of a jump in ski jumping [Groh et al. 2017b], calculate performance parameters in
swimming such as the amount of strokes and time needed per lane [Bächlin et al. 2009] and recognize batting
shots in cricket [Khan et al. 2017].

• Animal welfare and sports. Although the field is often referred to as Human Activity Recognition (HAR)
[Bulling et al. 2014], several activity recognition applications have been developed for non-human users. These
include wearable sensors to: detect deviations in the usual gait of cows in order to warn veterinarians about
possible lameness-related diseases [Haladjian et al. 2018b, 2017], assess the performance during horse dressage
riding [Thompson et al. 2015], recognize gaits and compute the duration of jumps in equestrian show jumping
[Echterhoff et al. 2018a,b] and track the activities (i.e. eating, walking, resting) of sheep [Walton et al. 2018].

Few research works have studied the use of wearable sensors in soccer applications. Zhou et al. [Zhou et al. 2016]
attached a pressure sensitive smart textile matrix to a soccer shoe and studied how to compute the angle at which a
soccer ball is kicked. Similarly, Weizman et al. [Weizman and Fuss 2015] developed a smart shoe system with a matrix
of pressure sensors and a user interface that displays the force and center of pressure of soccer kicks. Hossain et al.
[Hossain et al. 2017] studied the use of wrist-worn sensors to classify motion performed by soccer field players such as
passes, kicks, sprints, runs and dribblings. Schuldhaus et al. [Schuldhaus et al. 2016] used a wearable motion sensor in
the insole of a soccer shoe to detect specific motions such as dribbling and kicking, which they use to generate video
highlights automatically.

Other studies have used video cameras to automatically extract metrics from soccer games, such as the positions of
the field players and ball trajectories [Figueroa et al. 2006; Müller Junior and Anido 2004]. Our work focuses on tracking
soccer goalkeeper training exercises. We do this with an unobtrusive wearable sensor strapped around the glove at the
goalkeeper’s main hand that does not require calibration or setup.

2.2 Activity Recognition Methods

Most activity recognition applications developed so far are hand-crafted chains of computations, known as the activity
recognition chain [Bulling et al. 2014] to extract information from sensor signals. Multiple methods to segment sensor
signals, extract features and to select and prioritize features have been studied in the past. Methods used to recognize
patterns in sensor signals proposed so far include template-based methods such as string matching [Stiefmeier et al.
2007] and Dynamic Time Warping (DTW) [Barth et al. 2015; Muscillo et al. 2007; Plouffe and Cretu 2015; Seto et al.
2015], probabilistic methods such as the Hidden Markov Model (HMM) [Li et al. 2015; Martindale et al. 2017; Schiboni
and Amft 2018] and machine learning classifiers such as Support Vector Machines (SVMs) [Haladjian et al. 2018b;
Reyes-Ortiz et al. 2016]. Our exercise detection algorithm is based on a memory-efficient peak detection algorithm and
a two-step recognition method. In a first step, our recognition method filters out most irrelevant motion patterns that
correspond to passes (i.e. when goalkeepers pass the ball back to their trainer) by matching the signal to a pre-computed
template using Dynamic Time Warping. Second, it uses a machine learning classifier to determine the actual exercise.
Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 5

In the last few years, the community has started investigating the so-called end-to-endmethods for activity recognition.
These methods extract information directly from the raw data, thus, relieving developers from the tedious work to
study data and manually implement and assess an activity recognition algorithm. Different Convolutional Neural
Network (CNN) architectures have already surpassed hand-crafted methods in recognition performance [Ha and Choi
2016; Jiang and Yin 2015; Yang et al. 2015; Zeng et al. 2014]. Most notably, Recurrent Neural Networks (RNN) - mostly
Long-Short-Term-Memory (LSTM) - have been adapted to exploit the time-dependency of the sensor signals, attaining
the highest recognition results so far on large public benchmark datasets [Li et al. 2018; Murahari and Plötz 2018;
Neverova et al. 2016; Ordóñez and Roggen 2016; Zeng et al. 2018]. We use a lightweight unobtrusive device that can
be worn at the wrist by goalkeepers during a training session for up to 3 hours, or ideally longer. To satisfy these
requirements, we designed our system based on a lightweight embedded device that performs a low-cost hand-crafted
recognition algorithm locally.

3 METHODS

Figure 2 shows an overview of our recognition system. In this section, we describe the hardware device we used, how
we collected the data and the computations we performed to detect and classify goalkeeper training exercises.

Data
Collection

Preprocessing

Labeling

Exercise
Classification

Feature
ExtractionSegmentationExercise

Detection

Feature

Selection

Runtime

Development

Pass
Elimination

Template
Computation Validation

Fig. 2. Overview of the computations we perform to detect and classify goalkeeper training exercises. We separate between computa-
tions done at development and runtime.

3.1 Hardware

We collected data using a sensor device called MicroHub developed by the company InteractiveWear 1. The MicroHub is
a modular sensing device developed for wearable applications with an ARM Cortex-M0 microcontroller, Invensense’s
ICM20602 6-axis (accelerometer and gyroscope) Inertial Measurement Unit (IMU), a Bluetooth Low Energy (BLE)
module and an SD card. The accelerometer measures acceleration forces in units of gravity g. Such forces may be
static (e.g. the gravity) or dynamic (e.g. motion). The gyroscope measures angular velocity (i.e. the speed of rotation) in
degrees per second (dps). The accelerometer and gyroscope were set to their maximum ranges: ±16 g and ±2000 dps,
respectively. The data produced by both sensors was recorded with a 16 bit resolution and stored in an SD card mini
with a capacity of 2 GB. This made it possible for us to store several hours of training at a sampling rate of 100 Hz
without data loss or disconnections, as might have been the case with a wireless communication technology.

1http://www.interactive-wear.com/

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Haladjian, J. et al

(a) Glove (b) MicroHub

Fig. 3. Smart Glove components and orientation of the accelerometer axes. The x-axis represents side movements, the y-axis forward
and backward movements and the z-axis up and down movements.

The Microhub was powered with a 200 mAh Li-Po battery. With this battery, the device remains functional for at
least 6 hours while recording raw data continuously and storing it on the SD card. The device’s dimensions (including
the battery) are: 3.8 x 1.1 x 2.4 cm. To fit the device into a goalkeeper’s glove, we designed a mount that is strapped
tightly using the glove’s strap above the wrist. Since our mount does not require modifications to the glove, it can be
strapped around most goalkeeper gloves in the market. The MicroHub is oriented such that the x-axis represents side
movements (i.e. to the left and right of the user’s hand), the y-axis forward and backward movements (i.e. towards or
against the fingers) and the z-axis up and down movements (assuming the palm of the hand is facing the ground). The
glove, mount and sensor coordinate system are shown in Figure 3.

Table 1. Data collection plan followed with each goalkeeper. Dive Stand is a variation of a dive where the goalkeeper had to stand up
quickly after the dive.

Exercise Type Repetitions
1 Dive x5 low left, x5 low right, x5 high left, x5 high right
2 Catch x10 hand catch, x10 body catch and x10 ground catch
3 Dive Stand x5 low left, x5 low right, x5 high left, x5 high right
4 Throw x10 high, x10 low
5 Jump Catch x8

3.2 Data Collection

We collected data from 14 goalkeeper trainees during their training with a professional goalkeeper trainer with over 30
years of experience. During the training, goalkeepers performed different variations of dives, throws and catches. The
trainer threw balls at the goalkeepers from different angles and at different intensities. After performing the motion,
goalkeepers passed the ball back at the trainer to signal that they were ready for the next repetition. Figure 1 shows
goalkeepers executing these exercises during their regular training. The goalkeeper trainees we recorded were male,
right handed, 10 to 17 years old, had 1 to 7 years of experience training as goalkeepers and were 1.5 to 2.01 meters
tall. Goalkeepers first warmed up, stretched and then started the exercise execution. Table 1 summarizes the exercises
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 7

performed by goalkeepers and the approximate amount of repetitions they performed. Each training session lasted on
average 33 minutes, which led to a file size of approximately 3 MB per recording session.

3.3 Labeling

Each training session lasted approximately one hour. We video-recorded the entire training and annotated every
repetition of the training exercises (e.g. dives, catches, throws) as well as other motions goalkeepers performed during
the training, such as passes (i.e., when the goalkeeper passed the ball back to the trainer), sprinting, clapping with the
hands and bouncing the ball. To synchronize the sensor signal and video recording, we asked goalkeepers to clap three
times in the beginning, middle and at the end of the training session. The annotations were done by five individuals and
were reviewed by one of the authors to ensure consistency. In total, we labeled 2562 motion instances (1518 training
exercises and 1044 instances of other motion, such as passes and hand claps).

3.4 Exercise Detection

The Exercise Detection identifies possible exercises in an incoming stream of motion data. An overview of the different
computations our detection algorithm performs is shown in Figure 4. We start by computing the squared magnitude of
acceleration along the x, y and z-axes according to:

Maдnitude2 = a2
x + a

2
y + a

2
z (1)

Most exercises cause a peak in the squared magnitude signal due to an impact with the ball or ground. These peaks
occur suddenly (i.e., have a duration of 50 ms or less) and hence contain mostly motion in high frequency bands.
Therefore, we filter out low-frequency motion using a first order Butterworth high-pass filter with a cutoff frequency
fc = 25 Hz.

In the next step, we detect peaks in the filtered squared magnitude signal with a peak detection algorithm that
executes for each new value. A new value becomes the peak candidate if it is above a minimum peak threshold η and if
it is larger than the current peak candidate (in case the peak candidate is already set). Peak candidates become a peak
after a minimum amount of samples δ elapse. We selected the parameter values η = 8.2 × 106 д2 and δ = 97 samples

because they yielded the best detection performance, as we discuss in the Results section.

3.5 Pass Elimination

The peak detection method described in the previous subsection detects movements with a high intensity. A particular
movement with high intensity performed frequently by goalkeepers is the pass, as they pass the ball back to the trainers
after most exercise repetitions. Since passes are not an exercise that is of interest to goalkeepers, they need to be filtered
out. While passes could be filtered out during the classification stage (i.e. by including them as a class in the machine
learning classifier), doing so would require extracting features and performing a classification for each detected pass.
The goal of the Pass Elimination procedure is to eliminate pass instances with a simple heuristic to avoid the more
computationally expensive feature extraction and classification computations.

Most goalkeepers perform passes in a similar way: they sequentially swing the arm back to gain momentum and
then forward and release the ball. This motion usually lasts approximately one second. Based on this observation, we
designed a method to detect and filter out passes that does not require extracting features or running a prediction for

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Haladjian, J. et al

Fig. 4. Sequence of computations performed by our approach to detect exercises. Top: raw accelerometer signal for two dives and a
pass. Middle: squared magnitude of the accelerometer signal. Bottom: high-pass filtered squared magnitude of accelerometer signal.
Both dives are detected using a peak detector with a minimum peak height η = 8.2 × 106.

each detected pass. It should be noted that we still include the pass in the different classifiers we studied under the
Other class, as described in the Classification subsection.

Comparing two pass segments by accumulating the distances of each of their samples sequentially would not account
for the fact that passes can vary in speed. As a consequence, this naive comparison procedure would compute a high
distance for two similar passes whenever one of the passes was performed at a different speed. Dynamic Time Warping
(DTW) is an algorithm that relies in dynamic programming to measure the similarity of two time series that might vary
in speed. In particular, it finds the matching between samples in a segment to samples in another segment that lead to a
minimal distance between segments.

Previous work in human activity recognition has successfully used DTW to identify human strides by first detecting
strides with a peak detector and then comparing them to a stride template [Derawi et al. 2010] or by directly comparing
consecutive segments to a stride template [Barth et al. 2015]. Similarly, our method compares the signal around a
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 9

detected peak to a pass template and discards the detected peaks if the segment around them is similar enough to the
template. Our procedure first creates a segment around the detected peak with index p according to:

skpass = [p − a′, ...,p + b ′] (2)

We determined the offsets a′ = 70 and b ′ = 25 empirically based on our observation that most peaks corresponding
to passes occur approximately 70 samples after the beginning of a pass and that the motion corresponding to a pass
lasts for approximately 95 samples. These segments contain only the acceleration along the y-axis, as we found this
axis to represent best the swing performed during a pass. The DTW algorithm computes the distance between a pass
segment and the pass template based on a cost metric to compare two samples. As a cost metric, we used the absolute
difference in y-acceleration between the two samples.

Our procedure discards events if the segments around them have a DTW-distance to the pass template smaller than
a threshold τ . We compared the performance of different values of τ (see section Results) and set τ = 39000. The next
subsection describes how we computed the pass template.

3.6 Template Computation

An ideal pass template ST has a small distance to as many pass segments Si and a large distance to as many non-pass
segments as possible. Our template computation procedure selects as the template the pass segment with the minimal
distance to the greatest number of other pass segments. We compute the template in three steps. The first step computes
the distance between every pair of pass segments. To this end, we fill the matrixM(i, j) ∈ Rnxn with the DTW-distances
of each pass segment Si to each other pass segment Sj according to:

M(i, j) =

DTW (Si , Sj), i, j ∈ [1, ...,n], if i , j

∞, if i = j
(3)

where n is the number of pass segments detected by the Exercise Detection stage. The distance between a segment to
itself is set to∞ because the second step counts how many other segments a segment is closest in distance to. Thus,
settingM(i, i) = ∞ avoids counting a segment as having the closest distance to itself.

In the second step, we determine which segments are closest in distance to each other segment. To this end, we define
the matrix B ∈ Rnxn that contains a 1 at each position B(i, j) if the segment Si is closest in distance to the segment Sj ,
or a 0 otherwise. In other words, we set a 1 at B(i, j) ifM(i, j) is the minimum of the j column in M:

B(i, j) =

1, ifM(i, j) =min(M(k, j)),∀k ∈ [1, ...,n]
0, otherwise

(4)

The third step counts how many segments a specific segment has minimal distance to. This is done by accumulating
the values in each row of B into a vector C:

C(i) =
n∑
j=1

B(i, j),∀i ∈ [1, ...,n] (5)

Finally, we perform a voting method to decide which pass segment becomes the template. A naive method to select a
pass template would let every segment vote for another pass segment (e.g. the pass segment with shortest distance) and
select the pass segment with largest number of votes. However, this voting method might select an outlier pass segment

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Haladjian, J. et al

as a template which is closest in distance to only a few other pass segments. In particular, this might happen if the pass
segments are spread such that each of them are closest to different pass segment candidates without a clear winner.

Instead, we use the Instant-runoff voting method. In computational social choice theory, Instant-runoff is a method
to select a single winner in an election with more than two candidates. The method lets voters rank every candidate in
order of preference. If a candidate obtains the majority of the votes, it is elected as the winner. Otherwise, the candidate
with least amount of votes is eliminated and the election is repeated with the remaining candidates. In our adapted
version of the method, every pass segment is a voter and a candidate to become the template at the same time and pass
templates are ranked based on the number of other segments they are closest to in DTW-distance. In each iteration, our
algorithm eliminates the segment Sm with smallest distance to the least other segments: {m | Cm = min(Ci),∀i = 1...n)}
from the list of candidates. This procedure is repeated n − 2 times. In each iteration, the matrix B and vector C are
recomputed. After n − 2 iterations, only one segment is left, which is selected as template. Figure 5 shows the template
selected with this procedure on top of every other pass segment in our data set.

Fig. 5. Acceleration along the y-axis of every pass segment (black) and the template (red).

3.7 Segmentation

For each event that was not eliminated in the Pass Elimination procedure, we create a segment range k around the peak
location xp according to:

k = [xp−a , ...,xp+b] (6)

We set a = 130 and b = 90 empirically based on a visual comparison of the motion produced by the different exercise
instances, as shown in Figure 6. The Segmentation stage produces a segment S(k) containing the acceleration, angular
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 11

Fig. 6. Squared magnitude of acceleration of every segment produced by the segmentation algorithm plotted on top of each other
and grouped by exercise.

velocity and squared magnitude of each sample in the range k . Figure 6 displays the segments produced by our algorithm
after this step, which are used for feature extraction, as described in the next section.

3.8 Feature Extraction

We studied a set of statistical and heuristic features. The statistical features we chose have been previously used in
similar wearable activity recognition applications [Blank et al. 2015; Bulling et al. 2014; Haladjian et al. 2017]. The list of
features we studied is summarized in Table 2. The statistical features are computed on all three axes of acceleration and
angular velocity. Heuristic features are computed on all three axes of the acceleration vector, all three axes of angular
velocity and on the squared magnitude of acceleration computed with Equation 1.

We designed heuristic features to highlight the differences in motion across the different exercise variations. The
peaks detected in the Exercise Detection are located at the moment of maximum intensity of acceleration (e.g., contact
with the ground, contact with the ball, release of a ball). The different exercises have a different acceleration before the
peak and deceleration after the peak along each axis. To capture the differences in acceleration and deceleration, we
split the segment in three parts based on the position of the peak p as: klef t = [1, ..,p − c], kcenter = [p − c, ...,p + c]
and kr iдht = [p + c, ...,n] where n is the number of samples in the segment and c is a constant. We set c = 20 by
observing the signals grouped by exercise, as shown in Figure 6. Figure 7 shows the mean acceleration along the z-axis
of all three parts computed from every right and left dive in our data set.

Some classifiers calculate the distance between feature vectors. Features with a large range of values might contribute
more to the distance than features with smaller ranges of values. Therefore, we normalize every feature fi in the
segment to have zero mean and a standard deviation in the range [−1, 1] with:

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Haladjian, J. et al

Fig. 7. Dive right (blue) and left (orange) computed by averaging the acceleration along the z-axis of every dive segment in our data
set. Most right dives have a positive acceleration mean before the peak and negative during and after the peak. Most left dives have
the opposite acceleration.

Table 2. List of features we studied. Statistical features are computed on the entire segment. Heuristic features are computed on each
segment part: kle f t , kmiddle and kr iдht .

Type Features
Statistical mean, median, standard deviation (std), accumulated squared magnitude of acceleration, skewness,

kurtosis, zero crossings (zcr), peak to peak amplitude (p2p), root mean square (rms), minimum value
(min), maximum value (max), correlation between acceleration axes (corr)

Heuristic mean, standard deviation (std), zero crossing, quantile, peaks

f̄i =
fi − µ(fi)
σ (fi) (7)

where µ(fi) and σ (fi) are the mean and standard deviation of the feature fi calculated based on every segment in
our data set.

3.9 Feature Selection

Extracting and classifying a larger number of features leads to a larger number of computations that have to done on
the wearable device and make machine learning classifiers more prone to overfitting. For this reason, we studied how
to reduce the number of features with a feature selection algorithm called minimum Redundancy Maximum Relevance

(mRMR) [Peng et al. 2005]. The 20 most relevant features selected by mRMR and the signals they are computed on are
listed in Table 3.
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 13

Table 3. Features selected for classification using mRMR.

Feature Computed on
Quantile Az3, Az2, Az4, Ay2

Amount of Peaks Squared Magnitude on
kr iдht

Cross-correlation Ay - Az
Mean (Segment) Ay, Gz

Maximum Gx, Ay
Root Mean Square Gz, Gx
Standard Deviation Ay, Az

Median Absolute Deviation Ax, Gx
Median Az
Mean Az on kr iдht , Ay on kr iдht ,

Az on kmiddle

3.10 Exercise Classification

We compared the performance of different classifiers: Naive Bayes, Decision Tree, Random Forest, Support Vector
Machine (SVM) with linear and Radial Based Function (RBF) kernels, k-nearest neighbors (kNN) and a Neural Network.
For each classifier, we optimized the performance of the following parameters:

• SVM (RBF and linear kernel): cost parameter c ∈ {1, 2, 3, 5, 8, 13, 21, 34, 55}, kernel coefficient дamma ∈
{0.0, 0.1, 0.2, ..., 10.0}, tolerance for stopping criterion tol ∈ {0.001, 0.002, 0.003, ..., 0.3}.

• Decision Tree: maximum depthmax_depth ∈ {1, 2, 3, ..., 30}.
• Random Forest: maximum depth max_depth ∈ {1, 2, 3, ..., 30}, number of features to consider when look-
ing for the best split max_f eatures ∈ {1, 2, 3, ..., 11}, minimum number of samples required to reach a leaf
node min_samples_lea f ∈ {1, 2, 3, ..., 11}, minimum number of samples required to split an internal node
min_samples_split ∈ {2, 3, 4, ..., 11}.

• kNN: k ∈ {1, 2, 3, ..., 15}.
• NeuralNetwork: number of hidden layersn ∈ {1, 2}, size of hidden layershidden_layer_sizes ∈ {10, 20, ..., 3000},
solver for weight optimization solver ∈ {lb f дs,adam}, tolerance for the optimization tol ∈ {10−2, 10−3, ..., 10−6}.

3.11 Validation

To avoid evaluating the performance of the different methods we presented with the same data used to optimize the
parameters η (minimum peak height), δ (minimum amount of samples between peaks), τ (DTW distance threshold) and
the hyperparameters of our machine learning classifiers, we used a nested cross-validation procedure. In an outer loop,
we tested different values for the parameters and the inner loop performed a leave-one-subject-out cross-validation.
First, we found the optimal values for the parameters η and δ with a grid search in the ranges [3 × 106, 18 × 106] and
[10, 200] at intervals of 105 and 1, respectively. Then, we optimized τ using a linear search in the range [1×102 −2×105]
at intervals of 5 × 103. Finally, we optimized the hyperparameters of the classifiers with a randomized search followed
by a grid search. The randomized search gave us optimal value ranges for each parameter and the grid search found the
optimal values within each range. In each iteration of the inner loop, a different goalkeeper data file was excluded from
the training set and used for assessing the performance of our methods. We selected the parameters that lead to the
best average performance across player files.

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Haladjian, J. et al

4 RESULTS

Our algorithm first detects exercise instances from a stream of sensor values, and then classifies those detected events.
Applications that rely on our algorithm would only use the final classifications. However, to provide insight about the
different stages of our recognition pipeline, in this section we first report on the performance of the exercise detection
method, and then discuss the classification method.

4.1 Exercise Detection

This subsection reports on the performance results for the computations we presented in the Preprocessing, Exercise
Detection and Pass Elimination subsections. The detection of exercises can be understood as a binary classification (i.e. a
segment is either classified as relevant or not relevant). To validate our exercise detection procedure, we compared the
exercise labels to the detected segments as follows:

True Positive (TP). A detected segment that included a relevant exercise label.
False Positive (FP). A detected segment that did not include any relevant exercise label.
False Negative (FN). An exercise labeled as relevant that was not included in any of the detected segments.

Figure 8 shows a performance comparison of η and δ and Figure 9 presents the F-Score for different values of τ .
Our detection method achieves an F-Score of 92.2%. In total, 1424 of the 1518 exercise repetitions were detected by
our detection method (Recall = 93.8 %) whereas 148 instances of irrelevant movements were also detected as exercises
(Precision = 90.6%).

Fig. 8. Comparison of the F-Score for different values of η and δ . Red values indicate higher F-Scores. Line markers were placed at
the values leading to the highest F-Score (η = 8.2 × 106 and δ = 97).

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 15

Fig. 9. F-Score of the exercise detection for different values of τ . τ = 39000 achieves the highest F-Score: 92.2% (Precision 90.6%,
Recall 93.8%) with the peak detection parameters: η = 8.2 × 106 and δ = 97.

The performance of our detection algorithm at detecting the different exercises is shown in Table 4.

Table 4. Amount of instances of each motion type detected by our approach and annotated in our data set.

Exercise Detected Annotated %

Re
le
va
nt

Dive Right 285 286 99.7%
Dive Left 248 251 98.8%
Catch Hand 144 146 98.6%
Catch Body 212 217 97.7%
Catch Ground 145 158 91.8%
Jump Catch 112 150 74.7%
Throw High 141 145 97.2%
Throw Low 137 165 83.0%
Other 148 1044 14.2%

4.2 Exercise Classification

The segments detected as relevant by our exercise detection method are classified into the different exercises. Table 5
shows the accuracy of the different classification algorithms we tested. The classifier that achieved the highest accuracy
is the SVM with an RBF Kernel and a box constraint c = 7 (accuracy: 96.5%). The confusion matrix and classification
performance per exercise computed with this classifier are shown in Tables 6 and 7. The kNN classifier was tested with
k = 8, which led to the maximum accuracy among the different variations of the kNN algorithm of 92.2%.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Haladjian, J. et al

Table 5. Performance of different classifiers at classifying goalkeeper training exercises. SVM performed best with an RBF kernel and
parameters: c = 7, дamma = 0.0095. decision_f unction_shape = ovr and tol = 0.001

Accuracy Precision Recall
Naive Bayes 74.4% 76.1% 76.8%
Decision Tree 77.9% 78.8% 79.1%
Random Forest 87.2% 88.8% 88.3%
SVM (Linear) 93.0% 94.6% 93.6%
SVM (RBF) 96.5% 96.9% 96.7%
K-Nearest Neighbors 92.1% 92.5% 93.8%
Neural Network 93.8% 93.9% 93.5%

Table 6. Confusion matrix computed using an SVM classifier with an RBF kernel and cost parameter c = 7.

Annotated
DR DL CH CB CG JC TH TL

Pr
ed
ic
te
d

DR 271 12 2 0 0 0 0 0
DL 11 236 0 0 0 1 0 0
CH 2 0 141 0 0 1 0 0
CB 0 0 1 207 3 1 0 0
CG 1 1 0 8 135 0 0 0
JC 0 1 2 0 0 108 1 0
TH 0 0 0 0 0 0 140 1
TL 0 0 0 0 0 0 1 136

Table 7. Accuracy for each training exercise computed using the SVM classifier with an RBF kernel and cost parameter c = 7.

Precision Recall F-Score
Dive Right 95.1% 95.1% 95.1%
Dive Left 94.4% 95.2% 94.8%
Catch Hand 96.6% 97.9% 97.2%
Catch Body 96.3% 97.6% 97.0%
Catch Ground 97.8% 93.1% 95.4%
Jump Catch 97.3% 96.4% 96.9%
Throw High 98.6% 99.3% 98.9%
Throw Low 99.3% 99.3% 99.3%

5 DISCUSSION

The results we presented indicate that it is possible to detect and classify goalkeeper training exercises accurately. Our
detection approach detects 93.8% of the relevant exercise instances with a precision of 90.6% and the SVM classifier
with an RBF kernel achieves a classification accuracy of 96.5%.

We focused our analysis on the most common variations of the goalkeeper training exercises performed during a
training session. In a free-training (i.e. soccer match), the amount of relevant exercises might be considerably sparser
and goalkeepers might perform other exercises such as sprints, kicking the ball with the leg or warm up exercises
which we did not consider in this study. Therefore, we expect a lower precision in a free-training than the one we
presented in this study. In the future, the wider variability of a free-training should be studied to identify new classes
and train a classifier accordingly.
Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 17

Our detection approach detected over 97% of the instances of most exercise types and filtered out most of the
irrelevant motions. Only 148 instances of irrelevant motion were wrongly detected as relevant exercises, which is a
small fraction (14.2%) of the total amount of instances of irrelevant motion we annotated (1044) and an even smaller
fraction of every irrelevant motion goalkeepers performed during the training session which we did not annotate (e.g.,
walking, running, picking up a balls from the ground, receiving balls passed at them without any specific technique,
etc.). On the other hand, only 74.2% of the jump catches and 83.0% of the low throws were detected. The reason is that
these exercises contain low frequency motion that is attenuated by the high-pass filter, which causes the peak detector
to miss the peaks produced by some of these exercise instances. These exercises could be detected by lowering the
peak threshold η, but this would also increase the false positive detection rate. The SVM classifier with an RBF kernel
produced the highest accuracy of 96.5%.

Figure 9 shows that without our Pass Elimination procedure (τ = 0), the detection procedure achieves an F-Score
of 90.9% and that our Pass Elimination procedure improves this performance to 92.2% when τ = 39000. Besides the
improvement in recognition performance, an important benefit of this procedure is that every time a pass is eliminated,
no features have to be extracted, stored in flash memory (or transmitted wirelessly) and classified, resulting in a lower
energy consumption. The procedure can detect and eliminate more pass instances by increasing the template distance
threshold τ . However, increasing τ over a value of 39000 leads to the elimination of more relevant exercise instances
than irrelevant ones. The main reason for this is that low throws have a similar signature to passes, causing low throws
executed by players with a low intensity to be incorrectly matched to the pass template. Nevertheless, the procedure
we described can be used as-is in other applications if a particular class has a consistent signature that is different
enough from other classes. Furthermore, future work could study different template selection strategies. In particular,
we have selected our template based on its similarity to other instances of the same class. In the future, the distances to
other classes could also be used as part of the optimization metric to select a template. Furthermore, additional signals
(besides only the y-axis of the accelerometer vector) could be used to compare segments to the template and different
amounts of templates could be selected per class. Finally, future work could study the recognition and computational
performance when using the distances to different templates as features within a machine learning classifier.

A possible threat to validity to our evaluation procedure is that we haven’t used a test split to assess the performance
of the Pass Elimination method. As we assessed the performance of the Pass Elimination method with the same data we
used to select the pass template, the performance we presented might be slightly higher than on unseen data. In the
future, the collection of an additional data set will make it possible to select a pass template and assess the performance
of a Pass Elimination method with different data.

In order to enable further data analysis and to improve our recognition algorithms by means of online machine
learning, it would be convenient to have access to the feature vectors produced by our algorithm outside of the wearable
device. Since streaming feature vectors would require a mobile phone nearby during a training session, we decided to
store the feature vectors on the wearable device and transmit them to a mobile device after the training over Bluetooth
Low Energy. Since we set a minimal distance between peaks of 97 samples (0,97 seconds), at most 3711 motion instances
(relevant or irrelevant) can be detected by our approach during an hour of training. The features and a timestamp for
every detected motion instance could be stored in less than 304 kB memory (3711 instances x 21 features and timestamp
x 4 bytes per feature and timestamp). Furthermore, our detection algorithm detected a total of 1572 motion instances in
our data set (computed by aggregating the values in the Detected column in Table 4). As our data set consists of 14
training sessions, our algorithm would detect an average of 112 motion instances per training session, which could be
stored in approximately 9,6 kB memory (112 instances x 21 features and timestamp represented with 4 bytes each).

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Haladjian, J. et al

6 CONCLUSIONS

We have described a method to detect and classify goalkeeper training exercises. Detecting and classifying these
exercises represents a first step towards a virtual coach that gives goalkeepers relevant and objective feedback about
their exercise executions. A major challenge we addressed in this paper was on detecting the relevant training exercises
while avoiding other movements goalkeepers perform during a training session. We noticed that specially younger
goalkeepers tend to perform hectic movements that lead to a larger amount of false positive detections. We showed that
a careful preprocessing of the data using a high-pass filter in combination with Dynamic Time Warping can be used to
reduce the number of false positive detections. Furthermore, we achieved an exercise detection recall of 93.8% (precision:
90.6%) and a classification accuracy of 96.5%. Our segmentation approach and the methods we used to extract heuristic
features and automatically select the most relevant ones can be reused in other applications that require detecting or
classifying specific events such as strokes or shots in ball-based sports or strides in gait analysis applications.

Our work is by no means finished. An immediate next step is to investigate what performance metrics are relevant
to goalkeepers and which of those can be extracted accurately with our smart glove. Based on our discussions with
coaches and experienced goalkeepers, relevant performance metrics include: ‘the area of the goal where most balls are

missed or caught’, ‘the time needed to stand up on the feet after a dive’ and ‘the maximum height and length achieved

during a dive’. Future work should study how to compute different performance metrics with the segments detected
and classified by our algorithm.

Before goalkeepers are able to benefit from the system we propose, their needs as well as possible interaction
modalities for a user interface will have to be investigated. Some open questions are: What information are goalkeepers
interested in and how should this information be provided to them? Should the system provide goalkeepers live feedback
while in the field or should the feedback be given offline (e.g. while in the locker room or at home)? To keep the device
lightweight while exploiting the fact that most users nowadays have a smartphone, similar systems offer users an
interface over a smartphone. However, goalkeepers don’t always take their smartphone to the field and even if they did
they would have to take off their gloves to operate it via touch. An alternative would be a voice-based interaction, but a
soccer pitch is loud so goalkeepers would have to get close to the phone. Another question that raises is: where could a
smartphone be placed (e.g. behind the goal) such that it does not disturb the goalkeeper and cannot be hit by a ball?

Furthermore, a larger data set is likely to improve the accuracy and reveal corner cases. As we collect more data,
we might discover new irrelevant motions performed frequently by players (e.g. as we realized previously that some
players bounce the ball before a throw). These motions need to be considered by our algorithm (e.g. included in the
classifier). Furthermore, future work should add support for left-handed goalkeepers, which we did not consider in this
study. It might also be interesting to investigate how our recognition method could adapt itself based on data generated
after its deployment to the market (e.g. with online machine learning or with a user-dependent recognition).

We are currently investigating the suitability of a computer vision approach to recognize training exercises and
extract performance metrics from them. So far, we successfully used a pre-trained pose estimation algorithm to obtain
the body joints (wrists, hips, knees) of the goalkeeper from an image frame. These joints could be combined with a
machine learning algorithm to extract different exercise execution metrics. We believe that a computer vision approach
has a higher potential to accurately recognize exercise performance metrics relevant to goalkeepers. At the same time,
the approach would pose other challenges such as occlusion (e.g. a coach walking in front of the camera), confusion when
multiple players are detected in an image frame and would impose a higher degree of involvement from goalkeepers to
setup the camera in the field.

Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises 19

REFERENCES
Stefano Abbate, Marco Avvenuti, Francesco Bonatesta, Guglielmo Cola, Paolo Corsini, and Alessio Vecchio. 2012. A smartphone-based fall detection

system. Pervasive and Mobile Computing 8, 6 (2012), 883–899.
Oliver Amft. 2010. A wearable earpad sensor for chewing monitoring. In SENSORS, 2010 IEEE. IEEE, 222–227.
Oliver Amft, Holger Junker, and Gerhard Troster. 2005. Detection of eating and drinking arm gestures using inertial body-worn sensors. In Ninth IEEE

International Symposium on Wearable Computers (ISWC’05). IEEE, 160–163.
Marc Bächlin, Kilian Förster, and Gerhard Tröster. 2009. SwimMaster: a wearable assistant for swimmer. In Proceedings of the 11th international conference

on Ubiquitous computing. ACM, 215–224.
Ling Bao and Stephen S Intille. 2004. Activity recognition from user-annotated acceleration data. In International conference on pervasive computing.

Springer, 1–17.
Jens Barth, Cäcilia Oberndorfer, Cristian Pasluosta, Samuel Schülein, Heiko Gassner, Samuel Reinfelder, Patrick Kugler, Dominik Schuldhaus, Jürgen

Winkler, Jochen Klucken, and Others. 2015. Stride segmentation during free walk movements using multi-dimensional subsequence dynamic time
warping on inertial sensor data. Sensors 15, 3 (2015), 6419–6440.

Peter Blank, Julian Hoßbach, Dominik Schuldhaus, and Bjoern M Eskofier. 2015. Sensor-based stroke detection and stroke type classification in table
tennis. In Proceedings of the 2015 ACM International Symposium on Wearable Computers. ACM, 93–100.

Andreas Bulling, Ulf Blanke, and Bernt Schiele. 2014. A tutorial on human activity recognition using body-worn inertial sensors. ACM Computing Surveys
(CSUR) 46, 3 (2014), 33.

Jay Chen, Karric Kwong, Dennis Chang, Jerry Luk, and Ruzena Bajcsy. 2006. Wearable sensors for reliable fall detection. In 2005 IEEE Engineering in
Medicine and Biology 27th Annual Conference. IEEE, 3551–3554.

Mohammad O Derawi, Patrick Bours, and Kjetil Holien. 2010. Improved cycle detection for accelerometer based gait authentication. In 2010 Sixth
International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, 312–317.

Jessica Echterhoff, Juan Haladjian, and Bernd Brügge. 2018a. Gait Analysis in Horse Sports. In Proceedings of the Fifth International Conference on
Animal-Computer Interaction. ACM, 3.

Jessica Echterhoff, Juan Haladjian, and Bernd Brügge. 2018b. Gait and Jump Classification in Modern Equestrian Sports. In Proceedings of the 2018 ACM
International Symposium on Wearable Computers. ACM, 88–91.

Pascual J Figueroa, Neucimar J Leite, and Ricardo M L Barros. 2006. Tracking soccer players aiming their kinematical motion analysis. Computer Vision
and Image Understanding 101, 2 (2006), 122–135.

Benjamin H Groh, Martin Fleckenstein, Thomas Kautz, and Bjoern M Eskofier. 2017a. Classification and visualization of skateboard tricks using wearable
sensors. Pervasive and Mobile Computing 40 (2017), 42–55.

Benjamin H Groh, Frank Warschun, Martin Deininger, Thomas Kautz, Christine Martindale, and Bjoern M Eskofier. 2017b. Automated Ski Velocity and
Jump Length Determination in Ski Jumping Based on Unobtrusive and Wearable Sensors. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 1, 3 (2017), 53.

Sojeong Ha and Seungjin Choi. 2016. Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors.
In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 381–388.

Juan Haladjian, Katharina Bredies, and Bernd Bruegge. 2018a. KneeHapp Textile: A Smart Textile System for Rehabilitation of Knee Injuries. In Proceedings
of the 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, 9–12.

Juan Haladjian, Johannes Haug, Stefan Nüske, and Bernd Bruegge. 2018b. A Wearable Sensor System for Lameness Detection in Dairy Cattle. Multimodal
Technologies and Interaction 2, 2 (2018), 27.

Juan Haladjian, Zardosht Hodaie, Stefan Nüske, and Bernd Brügge. 2017. Gait Anomaly Detection in Dairy Cattle. In Proceedings of the Fourth International
Conference on Animal-Computer Interaction (ACI2017). ACM, New York, NY, USA, 8:1—-8:8. https://doi.org/10.1145/3152130.3152135

Juan Haladjian, Zardosht Hodaie, Han Xu, Mertcan Yigin, Bernd Bruegge, Markus Fink, and Juergen Hoeher. 2015. KneeHapp: A Bandage for Rehabilitation
of Knee Injuries. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM
International Symposium on Wearable Computers. ACM, 181–184.

H M Sajjad Hossain, Md Abdullah Al Hafiz Khan, and Nirmalya Roy. 2017. SoccerMate: A personal soccer attribute profiler using wearables. In Pervasive
Computing and Communications Workshops (PerCom Workshops), 2017 IEEE International Conference on. IEEE, 164–169.

Wenchao Jiang and Zhaozheng Yin. 2015. Human activity recognition using wearable sensors by deep convolutional neural networks. In Proceedings of
the 23rd ACM international conference on Multimedia. Acm, 1307–1310.

Aftab Khan, James Nicholson, and Thomas Plötz. 2017. Activity Recognition for Quality Assessment of Batting Shots in Cricket using a Hierarchical
Representation. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (2017), 62.

Frédéric Li, Kimiaki Shirahama, Muhammad Nisar, Lukas Köping, and Marcin Grzegorzek. 2018. Comparison of feature learning methods for human
activity recognition using wearable sensors. Sensors 18, 2 (2018), 679.

Zhen Li, Zhiqiang Wei, Yaofeng Yue, Hao Wang, Wenyan Jia, Lora E Burke, Thomas Baranowski, and Mingui Sun. 2015. An adaptive hidden markov
model for activity recognition based on a wearable multi-sensor device. Journal of medical systems 39, 5 (2015), 57.

Benoit Mariani, Mayté Castro Jiménez, François J G Vingerhoets, and Kamiar Aminian. 2013. On-shoe wearable sensors for gait and turning assessment
of patients with Parkinson’s disease. IEEE transactions on biomedical engineering 60, 1 (2013), 155–158.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Haladjian, J. et al

C F Martindale, M Strauss, H Gaßner, J List, M Müller, J Klucken, Z Kohl, and B M Eskofier. 2017. Segmentation of gait sequences using inertial sensor
data in hereditary spastic paraplegia. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
1266–1269. https://doi.org/10.1109/EMBC.2017.8037062

Bruno Müller Junior and Ricardo de Oliveira Anido. 2004. Distributed real-time soccer tracking. In Proceedings of the ACM 2nd international workshop on
Video surveillance & sensor networks. ACM, 97–103.

Vishvak S Murahari and Thomas Plötz. 2018. On attention models for human activity recognition. In Proceedings of the 2018 ACM International Symposium
on Wearable Computers. ACM, 100–103.

Rossana Muscillo, Silvia Conforto, Maurizio Schmid, Paolo Caselli, and Tommaso D’Alessio. 2007. Classification of motor activities through derivative
dynamic time warping applied on accelerometer data. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology
Society. IEEE, 4930–4933.

Natalia Neverova, Christian Wolf, Griffin Lacey, Lex Fridman, Deepak Chandra, Brandon Barbello, and Graham Taylor. 2016. Learning human identity
from motion patterns. IEEE Access 4 (2016), 1810–1820.

Francisco Ordóñez and Daniel Roggen. 2016. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition.
Sensors 16, 1 (2016), 115.

S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. Growdon, D. Standaert, M. Akay, J. Dy, M. Welsh, and P. Bonato. 2009. Monitoring Motor Fluctuations
in Patients With Parkinson #x0027;s Disease Using Wearable Sensors. IEEE Transactions on Information Technology in Biomedicine 13, 6 (nov 2009),
864–873. https://doi.org/10.1109/TITB.2009.2033471

Shyamal Patel, Delsey Sherrill, Richard Hughes, Todd Hester, Theresa Lie-Nemeth, Paolo Bonato, David Standaert, and Nancy Huggins. 2006. Analysis of
the Severity of Dyskinesia in Patients with Parkinson’s Disease via Wearable Sensors. In International Workshop on Wearable and Implantable Body
Sensor Networks (BSN’06). IEEE, 123–126. https://doi.org/10.1109/BSN.2006.10

Hanchuan Peng, Fuhui Long, and Chris Ding. 2005. Feature selection based on mutual information criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Transactions on pattern analysis and machine intelligence 27, 8 (2005), 1226–1238.

Guillaume Plouffe and Ana-Maria Cretu. 2015. Static and dynamic hand gesture recognition in depth data using dynamic time warping. IEEE transactions
on instrumentation and measurement 65, 2 (2015), 305–316.

Jorge-L Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, and Davide Anguita. 2016. Transition-aware human activity recognition using smartphones.
Neurocomputing 171 (2016), 754–767.

Giovanni Schiboni and Oliver Amft. 2018. Sparse natural gesture spotting in free living to monitor drinking with wrist-worn inertial sensors. In Proceedings
of the 2018 ACM International Symposium on Wearable Computers. ACM, 140–147.

Dominik Schuldhaus, Carolin Jakob, Constantin Zwick, Harald Koerger, and Bjoern M Eskofier. 2016. Your personal movie producer: generating highlight
videos in soccer using wearables. In Proceedings of the 2016 ACM International Symposium on Wearable Computers. ACM, 80–83.

S Seto, W Zhang, and Y Zhou. 2015. Multivariate Time Series Classification Using Dynamic Time Warping Template Selection for Human Activity
Recognition. In 2015 IEEE Symposium Series on Computational Intelligence. 1399–1406. https://doi.org/10.1109/SSCI.2015.199

Thomas Stiefmeier, Daniel Roggen, and Gerhard Tröster. 2007. Gestures are strings: efficient online gesture spotting and classification using string
matching. In Proceedings of the ICST 2nd international conference on Body area networks. ICST (Institute for Computer Sciences, Social-Informatics
and˜. . . , 16.

Emmanuel Munguia Tapia, Stephen S Intille, and Kent Larson. 2004. Activity recognition in the home using simple and ubiquitous sensors. In International
conference on pervasive computing. Springer, 158–175.

Robin Thompson, Ilias Kyriazakis, Amey Holden, Patrick Olivier, and Thomas Plötz. 2015. Dancing with horses: automated quality feedback for dressage
riders. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 325–336.

Emily Walton, Christy Casey, Jurgen Mitsch, Jorge A Vázquez-Diosdado, Juan Yan, Tania Dottorini, Keith A Ellis, Anthony Winterlich, and Jasmeet Kaler.
2018. Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour. Royal Society open science 5, 2 (2018),
171442.

Yehuda Weizman and Franz Konstantin Fuss. 2015. Sensor Array Design and Development of Smart Sensing System for Kick Force Visualization in
Soccer. Procedia Technology 20 (2015), 138–143.

Disheng Yang, Jian Tang, Yang Huang, Chao Xu, Jinyang Li, Liang Hu, Guobin Shen, Chieh-Jan Mike Liang, and Hengchang Liu. 2017. TennisMaster: an
IMU-based online serve performance evaluation system. In Proceedings of the 8th Augmented Human International Conference. ACM, 17.

Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and Shonali Krishnaswamy. 2015. Deep convolutional neural networks on multichannel time
series for human activity recognition. In Twenty-Fourth International Joint Conference on Artificial Intelligence.

Ming Zeng, Haoxiang Gao, Tong Yu, Ole J Mengshoel, Helge Langseth, Ian Lane, and Xiaobing Liu. 2018. Understanding and improving recurrent
networks for human activity recognition by continuous attention. In Proceedings of the 2018 ACM International Symposium on Wearable Computers.
ACM, 56–63.

Ming Zeng, Le T Nguyen, Bo Yu, Ole J Mengshoel, Jiang Zhu, Pang Wu, and Joy Zhang. 2014. Convolutional neural networks for human activity
recognition using mobile sensors. In 6th International Conference on Mobile Computing, Applications and Services. IEEE, 197–205.

Bo Zhou, Harald Koerger, Markus Wirth, Constantin Zwick, Christine Martindale, Heber Cruz, Bjoern Eskofier, and Paul Lukowicz. 2016. Smart soccer
shoe: monitoring foot-ball interaction with shoe integrated textile pressure sensor matrix. In Proceedings of the 2016 ACM International Symposium on
Wearable Computers. ACM, 64–71.

Manuscript submitted to ACM

6.3. TEACHING WEARABLE DEVICE DEVELOPMENT WITH THE
WEARABLES DEVELOPMENT TOOLKIT

6.3 Teaching wearable device development with the
wearables development toolkit

This publication describes the formative process we followed to develop the WDK and
how the WDK has been used for teaching purposes in a university context.

The author of this Habilitation developed the WDK, studied its usage by students
during the development of activity recognition applications they worked on as part of
their theses and wrote the paper.

Authors Haladjian, J., & Bruegge, B.
Workshop CEUR Workshop Proceedings
Number of Pages 2
Type Short Paper
Review Peer Reviewed (4 Reviewers)
Year 2019
Link http://ceur-ws.org/Vol-2308/

89

Teaching Wearable Device Development with the
Wearables Development Toolkit
1st Juan Haladjian

Chair for Applied Software Engineering
Technical University of Munich)

Munich, Germany
haladjia@in.tum.de

2nd Bernd Bruegge
Chair for Applied Software Engineering

Technical University of Munich)
Munich, Germany
bruegge@in.tum.de

Abstract—This paper introduces the Wearables Development
Toolkit (WDK), a set of tools to support the development of
wearable device applications. It lowers the entrance barrier to
wearable device development. We discuss our experiences in
leveraging the WDK to teach wearable device development to
students of computer science.

Index Terms—software engineering, wearable computing,
wearables development toolkit

I. INTRODUCTION

The growing number of students of computer science calls
for new teaching methodologies that are able to cope with
larger number of students while maintaining the teaching
quality. Digital technology has made it possible to transmit
content to large numbers of students. However, actively en-
gaging students in the learning process remains a challenge.
Courses where students actively work on a project are usually
associated with high supervision costs and therefore scale less
well to larger number of students. A particular challenge for
instructors is combining their teaching and research responsi-
bilities.

Our research focus is on wearable computing. We develop
wearable device applications, which make use of sensor data
to extract relevant information from the user or her context.
For example, we developed a wearable device that uses a
motion sensor to detect lameness in dairy cattle [1], [2].
The development of wearable device applications requires
multidisciplinary highly-specialized knowledge (e.g. electrical
engineering, computer and data science).

The WDK is a collection of wearable sensors (see Figure
1) and tools to facilitate the development process of wearable
device applications. The toolkit is meant to guide students
during the development process and to enable them to study
possible design solutions while saving time in implementation
details. In this paper, we discuss our experience in teaching
wearable application development to students of computer
science using the WDK.

II. WEARABLES DEVELOPMENT TOOLKIT

Figure 2 shows the different activities in the development
process of a wearable device application. Most wearable
device applications extract information from sensor data. The
development process usually starts with the collection and

Fig. 1. Wearable sensor kit developed by InteractiveWear. Source:
http://www.interactive-wear.com/

annotation of data. After this, developers usually develop
and evaluate different signal processing and machine learning
methods. Finally, the application is deployed into the actual
device. The WDK consists of four components: the Wearable
Sensors Platform, the Data Annotation Tool, the Visualization
tool and the Evaluation tool.

The Wearable Sensors Platform is a collection of wearable
sensors which can be plugged into a sensor hub and configured
over an iPhone App. This enables users to collect data without
having to design or assemble a new sensor or to develop
a firmware that stores data. Figure 1 shows the sensor hub
and different hardware components. The Data Annotation
Tool is used to automatize the data annotation process by
synchronizing and displaying the sensor data together with
reference markers enabling the user to annotate events in the
time series signal. Figure 3 shows the Data Annotation Tool.
The Visualization tool enables users to understand the sensor
data as well as the effects different signal processing methods
have on the data, which is critical for most activity recognition
application. The Evaluation tool lets users quickly configure a
chain of computations in order to assess its performance. The
WDK is open source1.

1https://github.com/avenix/WDK

27ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany

Fig. 2. Wearable device development activities.

Fig. 3. Data Annotation Tool displaying the acceleration collected by a Inertial
Measurement Unit attached to a limb of a cow. The strides performed by the
cow have been annotated.

III. TEACHING METHOD

Since 2011, we have supervised over 30 Bachelor’s and
Master’s theses in computer science at the Technical Univer-
sity of Munich. Most of these theses comprise the development
of a wearable device application or a feature of the WDK
itself. In this section, we describe how we leverage the number
of students to contribute to our research in wearable device
development.

In the beginning of each semester, we provide students
a tutorial on activity recognition with wearable devices2.
Students are usually able to finish this tutorial within a
day. Afterwards, the students start working on a particular

2Tuorial on activity recognition with wearable devices:
https://github.com/avenix/ARC-Tutorial/

Fig. 4. Data Visualization Tool displaying the acceleration of a lacrosse
goalkeeper while performing several training exercises.

application. As students start engaging in activities for which
the WDK can spare them time, their instructor demonstrates
the relevant tools within the toolkit. As students use the WDK,
new requirements for the toolkit are identified, which are
usually analyzed by an instructor and implemented by other
students in the next term.

IV. CONCLUSIONS

The WDK enables students to reuse functionality and focus
on the novel aspects of their projects. The different tools
and documentation guide students through the development
process, thus relieving instructors.

REFERENCES

[1] J. Haladjian, J. Haug, S. Nüske, and B. Bruegge, “A Wearable Sensor
System for Lameness Detection in Dairy Cattle,” Multimodal Technolo-
gies and Interaction, vol. 2, no. 2, p. 27, 2018.

[2] J. Haladjian, Z. Hodaie, S. Nüske, and B. Brügge, “Gait Anomaly
Detection in Dairy Cattle,” in Proceedings of the Fourth International
Conference on Animal-Computer Interaction, ser. ACI2017. New
York, NY, USA: ACM, 2017, pp. 8:1—-8:8. [Online]. Available:
http://doi.acm.org/10.1145/3152130.3152135

28ISEE 2019: 2nd Workshop on Innovative Software Engineering Education @ SE19, Stuttgart, Germany

CHAPTER 6. PUBLICATIONS

6.4 Gait Analysis in Horse Sports

This publication describes an activity recognition application to characterize the gait
of horses during showjumping sports. This work builds on top of our work described
in Section 6.5, where we presented an approach to recognize gait jumps and gait types.
In this publication, we describe an algorithm to detect the length of a stride and jump
and present a user interface for riders.

The author of this Habilitation supervised Jessica Echterhoff throughout the de-
velopment of the algorithm presented in the paper including the data collection, the
development of the recognition algorithm and writing the paper.

Authors Echterhoff, J., Haladjian, J., & Bruegge, B.
Conference Fifth International Conference on Animal-Computer

Interaction
Number of Pages 6
Type Short Paper
Review Peer Reviewed (4 Reviewers)
Year 2018
DOI https://doi.org/10.1145/3295598.3295601

92

Gait Analysis in Horse Sports
Jessica Maria Echterhoff

Technical University Munich
Munich, Germany

contact@jessicaechterhoff.com

Juan Haladjian
Technical University Munich

Munich, Germany
haladjia@in.tum.de

Bernd Brügge
Technical University Munich

Munich, Germany
bruegge@in.tum.de

ABSTRACT
In modern showjumping and cross-country riding, horse-rider-
pairs have to jump a series of obstacles in a given time. A
jump is considered successful (penalty-free) if a horse can
comfortably jump the fence without elements of the fence
falling down. If any of the elements of the fence falls down
or the horse refuses to jump, the rider obtains penalty points
or can be disqualified from the competition. An unsuccessful
jump can lead to injury and loss in trust of the rider. The
success of a jump is determined by the number, length and
harmony of strides a horse performs before a fence. We pro-
pose a system for tracking horse strides and jumps using a
smartphone attached to the horse’s saddle.

Our system detects and segments individual strides and com-
putes the length of a stride using signal processing and ma-
chine learning methods. We collected data from 9 horses who
performed several jumps. Our results indicate that our system
can detect horse strides with a precision of 96.3%, a recall of
95.7% and a pearson correlation of 0.73 with respect to our
ground truth data set. We further describe a method to char-
acterise the canter gait of the horse. Our system is intended
to be used by riders to adapt their training and competition
strategies to the physical limitations of the horse. The rider
can thus prevent accidents due to an overtaxing of the horse or
miscalculation of canter strides by the rider.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: Miscellaneous

Author Keywords
Wearable Sensing; Showjumping; Cross-Country; Motion
Characteristics; Activity Recognition

INTRODUCTION
Horses served humans for the entirety of modern history. They
helped humans to carry weights, farm fields and transport peo-
ple to different locations. In the modern western culture, most
heavy work is done by cars, trucks and agricultural tractors.
Humans and horses can thus enjoy athletic and leisure time
together, which contributes to a positive life quality of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACI18, December 4–6, 2018, Atlanta, GA, USA

© 2018 ACM. ISBN 978-1-4503-6219-1/18/12. . . $15.00

DOI: https://doi.org/10.1145/3295598.3295601

two companions. Showjumping and cross-country riding are
sports based on a deep confidence between the rider and the
horse and strengthen the bonding between them.

Showjumping as well cross-country riding require a rider and a
horse to jump over a course of fences in a specific order within
a given time. The order of fences, course length and optimal
speed is given by the course designer and known before riding
the course. Inside the course, fences are placed separately
or in close distance to each other. The horse has to make a
specific amount of strides between fences in order to perform
a successful jump.

We propose a system to keep track of gait characteristics and
present statistics of the ridden course to the rider with its de-
tails for specific canter strides made before each jump. We
study the horse’s motion signal collected with a sensor on the
horse’s body to obtain canter characteristics for showjump-
ing and cross-country riding. Our system assesses the stride
length to measure the equality of canter strides between the
jumps. The system provides the average stride length of each
horse to the rider to enable planning a strategy for the course
and measures the horse’s ability to reduce or extend the stride
length. Reducing the stride length means that the horse short-
ens the stride - it collects itself to cover less ground in the same
rhythm. Extending the stride length means that the horse’s
rhythm stays the same but the horse stretches itself to cover
more ground. The variability in stride length is an indicator of
the physical condition and training status of the horse. For ex-
ample, if a sequence of jumps is designed to have the horse put
two strides between them, but the horse’s stride is too short, it
will add a small extra stride. The horse will subsequently take
off too close to the second element of the jump combination.
Because the takeoff spot is too close to the jump, the horse
risks knocking the poles, or worse, tripping over the jump and
possibly even falling. Therefore, knowing the correct number
of strides between jump elements is not just a performance
issue, but a safety issue. Our system supports riders in deci-
sions regarding the right amount of strides to make in order to
perform more successful jumps and decrease the probability
of severe injury of the horse.

BACKGROUND
An average sport horse is able to move in three different gaits
- walk, trot and canter, which differ in the intensity of speed,
frequency, and vertical swing. We define the frequency of the
horses gait as the amount of steps made in a specific amount of
time and the vertical swing as the up-and-down movement of
the horse’s back. Walk is four-beat movement, trot a two-beat
movement with diagonal pairs simultaneously on the ground

Figure 1. Horse performing three equal canter strides before a jump. Canter strides (a), (b), (c) are of equal length and lead to a successful takeoff point
(d) and jump (e). Same horse performing three canter strides before a different jump. Canter strides (g), (h) are significantly longer than (f) and lead
to a takeoff point to far from the fence (i) and a jump, where the horse has to distort its body to jump the fence (j).

and canter is a three-beat movement. One canter stride is a full
sequence of a hind foot strike, diagonal pair and a front foot
strike in the 3-beat rhythm. Horses typically jump all fences in
a course running towards them in canter. While it is possible
to jump fences when trotting, it is not common in competition
and training scenarios.

Riders usually walk the course beforehand to measure dis-
tances between the fences and determine the amount of strides
to make between them. To successfully find a strategy for
riding the course, it is essential to know the horse’s stride
length and how far the horse is able to reduce or extend its
stride length. Depending on its training status and physical
conditions, a horse’s stride length and variability is different
and not always visually predictable. Riders need to prepare
the distribution of canter strides in front of a fence equally so
that the horse can jump a fence comfortably. This includes
bringing the horse towards the fence in an approximately 90
degree angle, so that it can jump the fence straight and close to
its centre. If fences are placed in short distance to each other,
it is required to make a specific amount of strides between
the fences. The rider needs to decide beforehand how many
strides to make with the horse. Inside a jumping course, two
fences can have no canter strides between them (so called
in-and-out), 1-2 strides between them (so called combination),
or 3-7 strides between them (so called distances). A well pre-
pared distance reduces the amount of interference between the
rider and the horse.

Throughout the course, the rider needs to keep harmony and
equality in the frequency, speed and length of canter strides. If
the horse increases or decreases the stride length right before
the jump more than a certain degree, the probability of an
unsuccessful jump increases. Figure 1 compares the strides
a rider determined and the horse performed before a proper
and a poor jump. In picture (i) and (j), we observe a tilted
body position of the horse to the left, performing a jump
unorthogonal to the fence jumping to the right side. The horse
is scrambling over the jump which can be seen because its
head is up and its neck is inverted (not round) to compensate
for taking off too far away from the jump. This position results
from the rider not determining the last canter strides before the
jump correctly ((f)-(h)). The takeoff point before the jump is
too far away from the fence and the horse is forced to jump in a
different flight curve than physically comfortable. In contrast,
picture (a)-(c) show a correct determination of canter strides,

leading to good takeoff point a natural flight curve of the horse
over the fence ((d)-(e)). We observe the horse to have a round
and balanced neck over the jump.

RELATED WORK
Previous research studies in the field of Animal-Computer
Interaction (ACI) have investigated the use of wearable tech-
nologies for different animal species. Research was done with
dogs and the respective dog-human interaction using wearable
sensors. Ladha et al. [6] focused on activity recognition for
dogs, and classified jumping and walking for measuring the
dogs’ well being. Similarly, Valentin et al. [14] studied how
to classify different dog gestures for the dog’s communication
with humans using wearable sensors. Thompson et al. [12]
classified and quantified postures and posture transitions for en-
hancing welfare and productivity of pigs. Haladjian et al. and
Pastell et al. [4, 9] developed an approach to detect anomalies
in the gait of cows that might be caused by a lameness-related
disease.

Previous research on horses includes using wearable sensors
both for the kinematic analysis of horses as well as for tracking
the rider’s posture. Low et al. [8] studied how to prevent lame-
nesses in racehorses using a wireless sensor system attached
to the horse’s limbs, whereas Uhlir et al. [13] used a wear-
able motion sensor in the horse’s neck to detect lamenesses
in horses. Thompson et al. [11] developed a system for auto-
mated feedback for dressage riders. They used several sensors
on the horse’s limbs to classify different gaits and specific ex-
ercises in the domain of dressage. Green et al. [5] provided a
system for tracking positions, velocity and physiological data
of horses using wearable sensors in equestrian training. Barrey
and Galloux studied the kinematics of a horse’s gait and found
that the penalty rate increased if the horse was ridden in a low
stride frequency and suddenly reduced its stride frequency at
takeoff [1, 3]. Other studies track the rider’s behaviour and
posture. Li et al. [7] investigated how to correct an equestrians
posture using a wearable sensor system. A similar study quan-
tifies the horse-rider-expertise using inertial sensors in show
jumping to classify their performance level [10].

In comparison to other approaches, our system focuses on
tracking and gathering information on the canter pattern of the
horse relevant for the respective rider in the context of horse
sports.

METHODS
Our system computes specific characteristics for the canter
gait of a horse. We perform computations on the horse motion
signal acquired by a smartphone. All further processing and
evaluation methods are based on the collected motion signal.

Study Design
We collected motion data from 9 different horses in their
regular showjumping or cross-country training. All horses
completed one or two full jumping courses, including 4 cross-
country courses and 5 showjumping courses. Our recordings
include gait motion such as walking and trotting before and
after the actual execution of the course. The horse-rider-pairs
jumped different fences such as verticals (see Figure 1), oxers
(two verticals in close distance to each other, to make the jump
wider) or tree trunks in different heights, widths and shapes
depending on the experience of the pair. These different fences
require different takeoff points to accomodate the width of the
respective jump. The horse-rider-pairs we selected ranged in
their levels of expertise. Some horse-rider-pairs were able to
jump 100 cm (± 5 cm) fences and others jumped 125 cm (± 5
cm) fences. We chose horses of different heights to represent
a broad variety of stride lengths. All horses and their informa-
tion is shown in Table 1. We recorded the signals produced by
the accelerometer, gyroscope and magnetometer available in
an iPhone 7 with a sampling rate of 100 Hz.

We placed the smartphone in a bag attached to the right side
of the saddle pad, with its display facing the horse’s body. Fig-
ure 2 shows how the iPhone was attached and illustrates the
sensor coordinate system. We mounted the bag on the horse’s
torso to capture its vertical and horizontal body movement. If
the rider had a stable and balanced posture inside the saddle,
contact to the smartphone with the rider’s leg was not possible.
We constructed the bag to fit the iPhone tightly to avoid noise
in the signal caused by shaking. We gathered the movement
of all 9 horses in four different riding arenas. Our data set
contains movements from two indoor arenas with a size of
20x30m and 20x60m as well as two outdoor arenas with a
size of 50x60m and 200x400m. Outdoor arenas enable horses
to gain more speed, which potentially leads to an increased
stride length and frequency compared to smaller indoor arenas.
We video recorded all horse-rider pairs during the data collec-

Figure 2. Placement of the smartphone on the horse’s body for measur-
ing body movements during jump training.

Fence height Horse Height Discipline

1 110 164 CC
2 110 145 CC
3 110 145 CC
4 110 164 CC
5 120 170 SJ
6 100 175 SJ
7 100 165 SJ
8 115 167 SJ
9 125 170 SJ

Table 1. Overview of the participants including parameters such as
fence height of the course (± 5 cm). Different horse heights were cho-
sen to represent different stride lengths according to physical conditions
of the horse. Performed disciplines were Showjumping (SJ) and Cross-
Country (CC).

tion and annotated start and end points for all canter strides
according to the video protocol.

Extraction of Canter Strides
Signal Preprocessing
To evaluate specific canter characteristics, we attenuated walk
and trot segments in the recorded data using the approach
described by Echterhoff et al. [2]. This approach detects canter
strides and jumps with a precision of 94.6% and classifies them
with an accuracy of up to 95.4%. We use this method to detect
the respective gait and jump segments for further detailed
processing.

To calculate the length of a canter stride, we determine the
start and end of each stride. For this purpose, we filter the
data with a first order Butterworth low-pass filter at 20 Hz
to eliminate noise from the signal. The raw signal S1raw is
transformed to the filtered signal S1 f ilt within the signal length
m:

S1 f ilt (xi) = Butter(S1raw(xi))

1≤ i≤ m
(1)

Peak Detection
The canter gait pattern is determined by two local minima
representing the start and end point as well as one local maxi-
mum. To obtain the local maximum for each stride, we run a
peak detection on S1 f ilt . To get the start and end of each canter
stride, we run another peak detection on the inverse filtered
acceleration x-axis signal S1 f ilt inv , which is defined as:

S1 f ilt inv(xi) = S1 f ilt (xi)∗ (−1)

1≤ i≤ m
(2)

The threshold h and minimal peak distance r for the peak
detection were chosen by visual observation of the raw
signal and set to 0.5 and 40. We detect peaks Pj(xi) for
j ∈ { f iltinv, f ilt} for canter strides as follows:

Figure 3. Stride segmentation performed on the filtered x-axis accelera-
tion signal by detecting peaks (blue) and inverse peaks (grey) (top). Final
canter stride segments 1,2,3 based on the peak detection (bottom).

Pj(xi) =

{
1, if s≥ h.∀s ∈ {S1 f ilt inv(xi),S1 f ilt (xi)}
0, otherwise

(3)

Stride Segmentation
To map each detected canter stride Pf ilt(xi) to one detected
start Pstart(xi) and one detected end peak Pend(xi), the two
peaks around Pf ilt(xi) were chosen:

Pstart(xi) = Pf iltinv(yi).

∀Pf iltinv(yi)< Pf ilt(xi)∧Pf iltinv(yi)> Pf ilt(xi−1)
(4)

Pend(xi) = Pf iltinv(yi).

∀Pf iltinv(yi)> Pf ilt(xi)∧Pf iltinv(yi)< Pf ilt(xi+1)
(5)

If there were more than one Pf iltinv(xi) detected between two
Pf ilt(xi) and Pf ilt(xi+1), we chose the one closest to the respec-
tive Pf ilt(xi).

The canter stride segments k, detected with our peak detection,
are defined by:

k = [Pstart(xi),Pend(xi)] (6)

Figure 3 shows three canter strides of the filtered signal S1 f ilt

and explains how the peaks were detected (top) and segmented
(bottom).

Stride Length Evaluation
The segments are characterised by the duration D in samples:

D(xi) = Pend(xi)−Pstart(xi) (7)

The average stride duration d in samples and seconds of each
horse is defined by

dsamples =
∑n

i=1 D(xi)

n
(8)

dsec =
dsamples

f
(9)

for the overall amount of canter strides n in seconds with
sampling frequency f = 100.

For each horse, the average canter stride length dsamples is
linearly compared with the horse’s height h using a pearson
correlation ρ to measure the strength of relationship between
the two characteristics.

ρ =
cov(h,d)

σhσd
(10)

with standard deviation σh,σd and covariance cov(h,d) of the
horse height and canter stride length. A pearson correlation
coefficient of 1 indicates a strong positive relationship, -1
indicates a strong negative relationship. A coefficient of 0
describes the absence of a linear relation.

Finding the Number of Canter Strides before Fences
Based on our stride extraction method, we detect the last can-
ter strides before a jump. To find the relevant strides, we first
detect jumps inside the horse motion signal using [2]. We
subsequently process the preceding 6 seconds before a jump
occurred. If this preceding time interval contains another jump
we trim the interval to fit between the respective fences. If
the time interval does not contain another jump, the interval is
trimmed to evaluate the last 7 canter strides before the jump.
We further process the interval with our stride segmentation
algorithm. The number and distribution of the detected can-
ter strides between two fences is then displayed inside the
user interface as an overview of the critical segments inside a
jumping course.

USER INTERFACE
All gait characteristics are evaluated in real time inside the
system, so that riders can see their training statistics for each
jump. Inside the user interface, we show three different compo-
nents. To evaluate the ridden path, an overview of the course
is shown. The rider can see the path to evaluate the route
to the respective fences (Figure 4 (a)). The user interface
shows if the curves to the fences were ridden correctly and
if the fences were reached in the right angle. Based on this
course overview, the rider can zoom into specific sections of
the course. The system shows the specific amount of strides
made between fences for distances and combinations as well
as the last canter strides before every single fence. The rider is
thus able to evaluate the canter strides before a fence and see
if the last strides were equally distributed. Figure 4 (b) shows
this distribution of canter strides between fences, which helps
the rider to post-evaluate problems of the jumping course.
Riders can furthermore observe canter characteristics of their

Figure 4. Bird’s eye view of the course jumped (left) and obtained horse
characteristics (right). Distribution of canter strides between fences.
Green color indicates an equal distribution of canter strides before the
fence, red color indicates that the canter strides before the jump were
not equally distributed (middle).

horse inside the application. We enable the rider to consider
the horse’s training status by its gait characteristics. The dis-
played characteristics are a basis for for recommendations
regarding possible training and competition strategies. For in-
stance, if the rider gets information on the horse’s small stride
length from our system, she can consider making one canter
stride more between the fences in the future. By knowing
the amounts of strides to be performed before specific fences,
riders can lead horses to find better takeoff points and gain
trust in the rider. The system supports the rider by offering a
post-evaluation of the ridden course. The rider can review the
horse’s performance and development over time and conclude
further training steps. The user interface was designed and
assembled by an experienced rider and enriched by the study
participants suggestions.

RESULTS

Extraction of Canter Strides
Due to the rolling up and down movement of the horse in
each canter stride we can detect the beginning and end of
each stride. To evaluate the canter stride detection method, all
beginnings and endings of canter strides in our data set were
previously labeled according to a collected video protocol. In
total, 3349 canter strides were labeled and used as our ground
truth. A canter stride was detected correctly and marked as a

#TP % #FP % #FN %

3204 95.7 122 3.6 145 4.3

Table 2. True Positives, False Positives, False Negatives and their respec-
tive share of the overall data set.

#Instances Precision Recall F-Measure

3349 96.3 95.7 96.0
Table 3. Performance of our canter stride detection approach in %.

True Positive (TP) if the maximum difference d of the detected
to the labeled inverse peak Pf iltinvstart(xi) and Pf iltinvend(xi) is
d ≤ 0.1 s and the segment k contained a labeled peak Pf ilt(xi).
The maximum difference d was chosen narrowly to ensure
a precise calculation of the stride length. Detected strides or
jumps were marked as False Positives (FP), if no label was
found within range d > 10 samples. Labeled, but undetected
strides were marked as False Negatives (FN). Correctly unde-
tected instances are referred to as True Negatives (TN). An
overview and the respective share to the ground truth is shown
in Table 2.

Figure 5 shows a comparison of every ground truth canter
stride length and the respective canter stride length detected by
our system. This figure shows that every horse has a tendency
towards a certain stride length. To explain the difference
in canter stride lengths of different horses, Table 4 shows
these two characteristics of the observed horses. We further
compared the extracted stride length to the horse’s height using
the pearson correlation, since a smaller horse typically has a
smaller stride length. The horse’s stride length and the horse’s
height are positively correlated with a pearson correlation
coefficient of 0.73.

CONCLUSION
This paper provides an evaluation of canter stride character-
istics for showjumping and cross-country riding. Our stride
detection algorithm extracts strides with a precision of 96.3%
and a recall of 95.7%. Our peak detection method is thus

Figure 5. Comparison of the real and detected canter stride length. The
vertical sections indicate the canter strides made by each different horse.

Stride Length Horse Height

1 60.4 164
2 52.7 145
3 54.4 145
4 52.6 164
5 59.5 170
6 60.8 175
7 60.3 165
8 59.8 167
9 58.4 170

Table 4. Average stride length in samples per horse and horse height in
cm.

suitable to provide feedback to the rider in real life. The mis-
detection rate of 3.6% and 4.3% for undetected instances of
our system indicates that the system’s prediction of the average
stride length will not differ significantly when tracking the gait
for an entire training session. We evaluate the ridden strides
by their length, which can help the rider to get an overview of
the training status and physical condition of a horse. This can
be used as a reference to plan the amount of strides to make
between fences for a successful course strategy. The pearson
correlation between the horse’s height and the stride length
is positively correlated with a correlation coefficient of 0.73.
The horse’s height is thus an indicator of its average stride
length.

In the future, we would like to investigate which other pa-
rameters have an impact on the horse’s average stride length.
Furthermore, we would like to study the importance of a cor-
rect takeoff point before a fence and its significance for a
successful jump. Some horses tend to get too close to the
fence before taking-off, and others takeoff to early before the
fence. This can lead to the horse touching or even falling
into the fence. Typically, these mistakes can be corrected by
proper training. We would like to study how to evaluate the
jumping tendency of the horse and provide this information as
a training suggestion to the rider.

To enhance the rider’s experience with the system, we would
like to evaluate the user interface in a study to improve the
impact of the user interface on the rider’s decision making and
consequently the horse-rider-pair’s performance.

REFERENCES
1. E. Barrey and P. Galloux. 1997. Analysis of the equine

jumping technique by accelerometry. Equine Veterinary
Journal 29, 23 (1997), 45–49.

2. J. Echterhoff, J. Haladjian, and B. Brügge. 2018. Gait and
jump classification in modern equestrian sports. In
Proceedings of the 2018 ACM International Symposium
on Wearable Computers. ACM, To appear.

3. P. Galloux and E. Barrey. 1997. Components of the total
kinetic moment in jumping horses. Equine Veterinary
Journal 29, 23 (1997), 41–44.

4. J. Haladjian, B. Brügge, and S. Nüske. 2017. An
approach for early lameness detection in dairy cattle. In

Proceedings of the 2017 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and
Proceedings of the 2017 ACM International Symposium
on Wearable Computers. ACM, 53–56.

5. A. Hill, A. Slamka, Y. Morton, M. Miller, and J.
Campbell. 2007. A real-time position, velocity, and
physiological monitoring and tracking device for
equestian and race training. In Proceedings of the ION
GNSS.

6. C. Ladha, N. Hammerla, E. Hughes, P. Olivier, and T.
Plötz. 2013. Dog’s life: Wearable activity recognition for
dogs. In Proceedings of the 2013 ACM International
Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 415–418.

7. J. Li, Z. Wang, J. Wang, H. Zhao, S. Qiu, and M. Guo.
2017. Study on the attitude of equestrian sport based on
body sensor network. In 2017 IEEE International
Conference on Systems, Man, and Cybernetics (SMC).
IEEE, 3653–3658.

8. J. Low, V. Mak, B. Forbes, F. Sepulveda, and C. Yeow.
2016. Development of a wearable gait detection system
for racehorses. In ISBS-Conference Proceedings Archive,
Vol. 33.

9. M. Pastell, M. Kujala, A. Aisla, M. Hautala, V.
Poikalainen, J. Praks, I. Veermäe, and J. Ahokas. 2008.
Detecting cow’s lameness using force sensors. Computers
and Electronics in Agriculture 64, 1 (2008), 34–38.

10. M. Patterson, J. Doyle, E. Cahill, B. Caulfield, and U.
Persson. 2010. Quantifying show jumping horse rider
expertise using IMUs. In Engineering in Medicine and
Biology Society (EMBC), 2010 Annual International
Conference of the IEEE. IEEE, 684–687.

11. R. Thompson, I. Kyriazakis, A. Holden, P. Olivier, and T.
Plötz. 2015. Dancing with horses: Automated quality
feedback for dressage riders. In Proceedings of the 2015
ACM International Joint Conference on Pervasive and
Ubiquitous Computing. ACM, 325–336.

12. R. Thompson, S. Matheson, T. Plötz, S. Edwards, and I.
Kyriazakis. 2016. Porcine lie detectors: Automatic
quantification of posture state and transitions in sows
using inertial sensors. Computers and Electronics in
Agriculture 127 (2016), 521–530.

13. C. Uhlir, T. Licka, P. Kübber, C. Peham, M. Scheidl, and
D. Girtler. 1997. Compensatory movements of horses
with a stance phase lameness. Equine Veterinary Journal
29, 23 (1997), 102–105.

14. G. Valentin, J. Alcaidinho, A. Howard, M. Jackson, and T.
Starner. 2016. Creating collar-sensed motion gestures for
dog-human communication in service applications. In
Proceedings of the 2016 ACM International Symposium
on Wearable Computers. ACM, 100–107.

6.5. GAIT AND JUMP CLASSIFICATION IN MODERN EQUESTRIAN
SPORTS

6.5 Gait and Jump Classification in Modern Eques-
trian Sports

This publication presents a wearable device application that tracks the gait of horses
(e.g. walking, trotting, running) and detects horse jumps during showjumping sports.
The paper details how the data was collected using a smartphone, processed using a
discrete wavelet transform and classified using different machine learning methods.

The author of this Habilitation supervised Jessica Echterhoff throughout the en-
tire development process presented in the paper including the data collection, the
implementation of the recognition algorithm in Matlab and writing the paper.

Authors Echterhoff, J., Haladjian, J., & Bruegge, B.
Conference International Symposium on Wearable Computers

(ISWC)
Number of Pages 4
Type Short Paper
Review Peer Reviewed (4 Reviewers)
Year 2018
DOI https://doi.org/10.1145/3267242.3267267

99

Gait and Jump Classification in Modern Equestrian Sports
Jessica Maria Echterhoff

Technical University Munich
Munich, Germany

contact@jessicaechterhoff.com

Juan Haladjian
Technical University Munich

Munich, Germany
haladjia@in.tum.de

Bernd Brügge
Technical University Munich

Munich, Germany
bruegge@in.tum.de

ABSTRACT
In modern showjumping and cross-country riding, the success
of the horse-rider-pair is measured by the ability to finish a
given course of obstacles without penalties within a given
time. A horse performs a successful (penalty-free) jump, if
no element of the fence falls during the jump. The success
of each jump is determined by the correct take-off point of
the horse in front of the fence and the amount of strides a
horse does between fences. This paper proposes a solution
for tracking gaits and jumps using a smartphone attached to
the horse’s saddle. We propose an event detection algorithm
based on Discrete Wavelet Transform and a peak detection to
detect jumps and canter strides between fences. We segment
the signal to find gait and jump sections, evaluate statistical
and heuristic features and classify the segments using differ-
ent machine learning algorithms. We show that horse jumps
and canter strides are detected with a precision of 94.6% and
89.8% recall. All gaits and jumps are further classified with
an accuracy of up to 95.4% and a Kappa coefficient (KC) of
up to 93%.

ACM Classification Keywords
I.5.4 Pattern Recognition: Applications: Signal Processing

Author Keywords
Activity Recognition; Wearable Sensing; Showjumping

INTRODUCTION
Horse riding was officially included in the 1900 Olympic
games in Paris, and since then equestrian activities gained pop-
ularity in the private and professional sector. Showjumping as
well cross-country riding are sports that require a rider and a
horse to jump over a course of fences in a specific order within
a given time. Depending on the course and type of competi-
tion, horses have to jump different kinds of fences: upright
fences (e.g. verticals), high and wide fences (e.g. oxers, triple
bars, tree trunks), wide and flat fences (e.g. moats). Inside
the course, fences are placed separately or in close distance
to each other. The horse has to perform a specific amount of
strides between fences in order to execute a successful jump.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISWC ’18, October 8–12, 2018, Singapore, Singapore

© 2018 ACM. ISBN 978-1-4503-5967-2/18/10. . . $15.00

DOI: https://doi.org/10.1145/3267242.3267267

A typical sport horse is able to move in three different gaits -
walk, trot and canter, which differ in the intensity of speed, fre-
quency and vertical swing. Walk, trot and transitions between
the two gaits are ridden for warming up the horse, keeping it
warm and cooling it down before and after the jumping course.
A balanced warm-up is essential for a responsive horse inside
the jumping course and the foundation of every successful
jump. A sport horse typically jumps all fences in a course
running towards them in canter. It is possible to jump fences
when trotting, but not common in competition scenarios. The
amount of strides between two jumps have to be chosen by the
rider and depend on the individual stride length and training
experience of the horse. Riders usually walk around the course
before a competition to measure distances between the fences
and calculate how many strides to make with their horse. The
ability to determine the optimal amount of strides to perform
before each fence is critical for a successful jump. However,
the stride length and canter pattern of every horse are different
and not always visually predictable, and depend on the rider’s
experience. Failing to jump a wooden fence can cause injury
to the horse and rider. Currently, human trainers provide feed-
back to riders for each jump in training sessions. However,
not every rider can afford a human trainer. Video feedback is
used for short jump sequences, but it might be impractical to
replay an entire training or competition. We propose a method
to classify horse gait types and detect canter strides and jumps
performed by a horse-rider-pair using a smartphone attached
to the horse’s saddle. Our method aims at generating a training
report that can be used by riders to analyse and keep track of
their training performance by generating a list of jumps and
strides made before each jump. This solution supports the

Figure 1. Three horses performing jump sequences over different fence
types such as a a tree trunk, an oxer and a vertical (from top to bottom).

88

rider in making strategic decisions on how to ride a course and
can prevent accidents due to a miscalculation of canter strides
in between fences.

Related Work
Wearable sensors have been used in a variety of sport appli-
cations. In the field of wearable technologies for animals,
research was done with dogs and the respective dog-human
interaction using wearable sensors [5]. Ladha et al. [6] fo-
cused on activity recognition for dogs, and classified jumping
and walking for measuring the dogs’ well being. Haladjian et
al. [2] developed an approach to detect anomalies in the gait of
cows that might be caused by a lameness-related disease. Pre-
vious work on equestrian applications includes using wearable
sensors both for the kinematic analysis of horses as well as for
tracking the rider’s posture. Low et al. [8] studied how to pre-
vent lamenesses in racehorses using a wireless sensor system
attached to the horse’s limbs. Thompson et al. [10] developed
a system for automated feedback for dressage riders using sen-
sors on the horse’s limbs to classify different gaits and specific
exercises in the domain of dressage. Green et al. [4] provided a
system for tracking positions, velocity and physiological data
of horses using wearable sensors in equestrian training. Barrey
and Galloux studied the kinematics of a horse’s gait and found
that the penalty rate increased if the horse was ridden in a
low stride frequency and suddenly reduced its stride frequency
at take off [1]. Other studies track the rider’s behaviour and
posture. Li et al. [7] investigated on how to correct an eques-
trians posture using a wearable sensor system. A similar study
quantifies the horse-rider-expertise using inertial sensors in
show jumping to classify their performance level [9].

METHODS
Our data set was collected using the accelerometer and gyro-
scope of an Apple iPhone 7 with a sampling rate of 100 Hz.
We placed the smartphone in a tightly fitted bag attached to
the right side of the saddle pad, its display facing the horse’s
body. We mounted the bag on the horse’s torso to capture its
vertical and horizontal body movement. We gathered the
movement of 9 horses in 4 different riding arenas, containing
movements from 2 indoor and 2 outdoor arenas. Outdoor are-
nas enable horses to gain more speed and lead to an increased
stride length. We monitored all horse-rider-pairs during their
usual jumping or cross-country training. Our recordings in-
clude gait motion such as walking and trotting before and
after the actual execution of the course. The horse-rider-pairs
jumped different fences in different heights, widths and shapes
depending on the experience of the pair (Figure 1). All pairs

FH[cm] RA[y] HH[cm] FH[cm] RA[y] HH[cm]

110 > 35 145-165 100 > 35 145-165
110 26-35 145-165 100 > 35 > 165
110 < 15 < 145 115 15-25 > 165
110 15-25 < 145 120 15-25 > 165

125 > 35 > 165
Table 1. Overview of the participants including horse height (HH), fence
height (FH) of the course (± 5 cm) and rider age (RA) in years indicating
experience of cross-country (left) and showjumping (right) riders.

jumped in their levels of expertise, some being able to jump
100 cm (± 5 cm) fences and others jumped 125 cm (± 5 cm)
fences during our study. We chose horses of different heights
to include different stride lengths to our data set (Table 2). We
video recorded the horse-rider-pairs and annotated the begin-
ning and ending of each walk and trot section as well as canter
stride and jump peaks according to the video protocol. In total,
49.24 minutes of data were recorded, including 25.38 minutes
of canter, 12.48 minutes of trot, 9.61 minutes of walk and 1.77
minutes of jumps.

Stride and Jump Detection
To find and further classify gait and jump segments, we use
two methods: we first perform an event detection to detect
canter strides and jumps. If no event is detected, we determine
walk and trot segments, where we do not detect single steps.
Detecting canter strides is particularly challenging because
most trot strides have a comparable acceleration. We decided
to detect canter strides and jumps on the acceleration along
the x-axis, based on our observation that most walk strides
and some trot strides have less acceleration than canter strides
along this axis (Figure 2 (a)).

We designed a filter based on Maximal Overlap Discrete
Wavelet Transform (MODWT) to reduce noise and attenu-
ate the frequencies dominant in most trot strides. We found
the seventh level MODWT using the ’Sym2’ symlet mother
wavelet to produce the desired effect based on a visual compar-
ison of the raw and filtered signal for the different gait types.
The raw signal S1raw is transformed to wavelet components
M1(xi) within the signal length m (1≤ i≤ m).

M1(xi) = MODWT (S1raw(xi)) (1)

By retaining levels six and seven for the signal reconstruc-
tion S1MODWT (xi), we discard narrower frequencies of the trot
sections, while keeping the wider frequencies from canter
strides/jumps (Figure 2 (b)).

S1MODWT (xi) = IMODWT6:7(M1(xi)) (2)

We run a peak detector on S1MODWT (xi) using a minimal peak
height h and a minimal peak distance r (Figure 2). The thresh-
old h and minimal peak distance r were evaluated experimen-
tally and set to 1.25 and 30. We detect peaks for canter strides
and jumps as follows:

Pj(xi) =

{
1, if S1(xi)≥ h∧Pj−1(xi−r) = 0
0, otherwise

(3)

All peaks detected by our peak detector are further used for
signal segmentation and feature extraction.

Gait, Stride and Jump Segmentation
We segment the signal using two different segment sizes de-
pending on the output of the peak detection: we define peak-
centered segments kp, aiming at describing canter strides and
jumps, to ensure that one exact canter stride/jump is evaluated
and further classified at a time. We process gaps between
peaks using duration-dependent segments kd , intending to de-
scribe a walk or trot interval rather than the single strides made
in this interval (Figure 3). We determine segments kp for every

89

Figure 2. Raw data stream of the x-axis accelerometer data for different movements walk, trot, canter and jumps (a). Processed data stream using
MODWT (b). Peak detection based on threshold h on the processed data (c).

detected peak Pj(xi)= 1 using a fixed frame located around the
peaks. We set the segment size for detected peaks to 100 ms
based on the observation that most jumps last around 100 ms.
We use the duration-dependent method if there is no peak de-
tected within the last 150 ms. Based on our observation that
jumps and canter strides have a wider length than walk or trot,
we define a smaller window size of 50 ms to process duration-
dependent segments. We define our peak-based segments kp
and duration-based segments kd = [xi−a,xi+b] with:

a,b =

{
50, if Pj(xi) = 1
25, otherwise

(4)

Feature Extraction and Selection
We calculate 268 different features for each determined seg-
ment for all axes of the accelerometer and gyroscope as well as
for their general magnitude and normalise them between [0;1].
We calculate standard statistical as well as heuristic features
for our specific problem. To find a feature set that describes
our data set as precisely as possible, we studied features in the
time and frequency domain, similar to [3]. We use the Mini-
mum Redundancy Maximum Relevance algorithm (mRMR)
to select 20 more relevant features for our entire data set.

Classification
We classified all feature vectors based on all peak-centered
and duration-dependent segments using 22 different machine
learning algorithms. Support Vector Machines (SVM) with
linear, quadratic and cubic and a fine, medium and coarse
gaussian kernel were tested. The gaussian SVM kernel with

Figure 3. Segmentation explained by the acceleration of a horse perform-
ing a transition from canter to walk to canter.

a number of predictors P were set to
√

P/4 for the fine,
√

P
for the medium and

√
P∗4 for the coarse gaussian SVM. We

tested the K-Nearest Neighbours (KNN) algorithm with a fine
(1 neighbour), coarse (100 neighbours), medium, cosine, cubic
and weighted (10 neighbours) kernel. Trees were computed
with a maximum number of splits of 100 for fine, 20 for
medium and 4 for coarse trees. We processed ensembles using
boosted, bagged, RUSBoosted trees, subspace discriminants,
subspace KNN, linear and quadratic discriminant algorithms.
We computed a 9-fold cross validation to test and train all
machine learning algorithms. All classifiers are compared by
accuracy and KC to comprise the imbalance of the jump class
in comparison to the gait classes to find a suitable classifier
for our problem.

RESULTS
A canter stride or jump was detected correctly and marked
as a True Positive (TP) if the maximum deviation d of the
detected to the labeled peak is d ≤ 50 ms. Detected strides or
jumps were marked as False Positives (FP), if no label was
found within range d. Labeled, but undetected strides or jumps
were marked as False Negatives (FN). Correctly undetected
instances were referred to as True Negatives (TN).

Stride and Jump Detection Results
We evaluated the threshold h and minimal peak distance r to
optimise the f-measure for our peak detector based on our
entire data set. This lead to an optimised threshold h = 0.125
and minimum peak distance r = 30 for our data set. We labeled
2687 canter strides and 137 jumps the ground truth. Our final
peak detector based on threshold h and minimal peak distance
r detected 2535 correct instances in total, including 107 jumps
and 2428 canter strides. The peak detector detected 144 false
positives, whereof 102 were walk and 40 trot, as well as one
misdetected canter stride and one jump (Table 3). It showed
289 false negatives (259 missed canter strides and 30 jumps)
(Table 2).

Type #TP % #FP % #FN %

Canter 2428 90.4 141 5.3 259 9.6
Jump 107 78.1 3 2.2 3 21.9

Total 2535 89.8 144 5.1 289 10.2
Table 2. Performance of our detection method.

90

Class # FP % #FN % Prec. Rec. F-M.

Walk 102 70.8 - - - - -
Trot 40 27.8 - - - - -
Canter 1 0.7 259 89.6 94.5 90.4 92.4
Jump 1 0.7 30 10.4 97.3 78.1 86.6

Table 3. Misdetection rate of our detection method per motion type. E.g.
70.8% of all incorrectly detected instances were walk (left). Precision,
Recall and F-Measure of the detection in % (right).

Walk Trot Canter Jump Prec. [%] Rec. [%]

Walk 1068 13 30 0 91 96
Trot 72 1273 56 1 95 91
Canter 31 55 2429 4 96 96
Jump 0 2 9 107 91 96

Table 4. Confusion matrix of the linear SVM classifier. Rows indicate
the ground truth, columns indicate predicted labels (left). Precision and
Recall of the classifier in % (right).

Classification Results
All gaits and jumps could be classified with an accuracy be-
tween 90.2% (coarse tree) and 95.4% (cubic SVM). The KC
ranged between 84.2% and 93.0%. For a detailed analysis, we
proceeded using the linear SVM with an accuracy of 94.7%
and a KC of 91.7%. Due to its lower computational costs, we
accept the loss in accuracy of 0.7% and KC of 1.3%. The
linear SVM algorithm classified canter strides and jumps with
a precision of 96% and 91% and a recall of 96%. Jumps were
misclassified as canter strides in most cases. If canter strides
were misclassified, most of them were misclassified as trot
steps. For walk and trot, the precision is 91% and 95%. The
confusion matrix is shown in Table 4. Canter strides were
mistaken by jumps in 2 cases (0.1% of all annotated canter
strides), whereas jumps were mistaken by canter strides in 9
cases (7.8% of all annotated jumps). Walk was mistaken as
canter strides in most cases, whereas trot was misclassified as
walk in the majority of all misclassified trot instances.

CONCLUSION
This paper provides a solution for gait and jump classifica-
tion in modern showjumping and cross-country riding. Data
streams of a smartphone were evaluated to detect and clas-
sify gaits and jumps in the training of modern sport horses.
We used the MODWT to remove gait-specific frequencies
and a peak detector to extract features. Our canter stride and
jump (peak-based) approach detects single strides and jumps
with a precision of 94.6% and 89.8%. We showed that our
method classifies gaits using machine learning algorithms with
an accuracy of up to 95.4% and a Kappa coefficient of up to
91.7%.

Our study was conducted for the specific purpose of detecting
jumps and strides in a given training session. The achieved
accuracy of the detection and classification is applicable and
it’s degree of error acceptable to support the rider in decisions
regarding the amount of canter strides to make between fences.
Our approach can thus increase the probability of perform-
ing a successful jump and potentially prevent accidents due
to the rider’s miscalculation of canter strides between fences.
Our work can be used to generate an evaluation of warm-up

and cool-down phases which can be used by riders to analyse
and keep track of their training performance. In the future,
the computational costs and energy consumption should be
assessed and the peak detection and feature selection parame-
ters should be recalculated on a larger data set using an inner
cross-validation.

REFERENCES
1. E. Barrey and P. Galloux. 1997. Analysis of the equine

jumping technique by accelerometry. Equine Veterinary
Journal 29, 23 (1997), 45–49.

2. J. Haladjian, B. Brügge, and S. Nüske. 2017. An
approach for early lameness detection in dairy cattle. In
Proceedings of the 2017 ACM International Symposium
on Wearable Computers. ACM, 53–56.

3. J. Haladjian, J. Haug, S. Nüske, and B. Bruegge. 2018. A
wearable sensor system for lameness detection in dairy
cattle. Multimodal Technologies and Interaction 2, 2
(2018), 27.

4. A. Hill, A. Slamka, Y. Morton, M. Miller, and J.
Campbell. 2007. A real-time position, velocity, and
physiological monitoring and tracking device for
equestian and race training. In Proceedings of the ION
GNSS.

5. M. Jackson, G. Zeagler, C.and Valentin, A. Martin, V.
Martin, A. Delawalla, W. Blount, S. Eiring, R. Hollis, Y.
Kshirsagar, and T. Starner. 2013. FIDO-facilitating
interactions for dogs with occupations: wearable
dog-activated interfaces. In Proceedings of the 2013
International Symposium on Wearable Computers. ACM,
81–88.

6. C. Ladha, N. Hammerla, E. Hughes, P. Olivier, and T.
Plötz. 2013. Dog’s life: Wearable activity recognition for
dogs. In Proceedings of the 2013 ACM International
Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 415–418.

7. J. Li, Z. Wang, J. Wang, H. Zhao, S. Qiu, and M. Guo.
2017. Study on the attitude of equestrian sport based on
body sensor network. In 2017 IEEE International
Conference on Systems, Man, and Cybernetics. IEEE,
3653–3658.

8. J. Low, V. Mak, B. Forbes, F. Sepulveda, and C. Yeow.
2016. Development of a wearable gait detection system
for racehorses. In ISBS-Conference Proceedings Archive,
Vol. 33.

9. M. Patterson, J. Doyle, E. Cahill, B. Caulfield, and U.
Persson. 2010. Quantifying show jumping horse rider
expertise using IMUs. In Engineering in Medicine and
Biology Society, 2010 Annual International Conference of
the IEEE. IEEE, 684–687.

10. R. Thompson, I. Kyriazakis, A. Holden, P. Olivier, and T.
Plötz. 2015. Dancing with horses: Automated quality
feedback for dressage riders. In Proceedings of the 2015
ACM International Joint Conference on Pervasive and
Ubiquitous Computing. ACM, 325–336.

91

CHAPTER 6. PUBLICATIONS

6.6 A Wearable Sensor System for Lameness Detec-
tion in Dairy Cattle

This publication presents a system to detect deviations from the usual gait in dairy
cattle and notify veterinarians. This work builds on top of the paper we present in
Section 6.9. It discusses the computations to detect strides and classify them as normal
or abnormal in greater detail. It also discusses and compares different alternatives to
segment gait strides.

The author of this Habilitation developed and studied the different signal process-
ing and activity recognition methods described in the article, designed the system and
wrote the article.

Authors Haladjian, J., Haug, J., Nueske, S., & Bruegge, B.
Journal Multimodal Technologies and Interaction (MDPI)
Number of Pages 15
Type Journal Article
Review Peer Reviewed (3 Reviewers)
Year 2018
DOI https://doi.org/10.3390/mti2020027

104

Multimodal Technologies
and Interaction

Article

A Wearable Sensor System for Lameness Detection in
Dairy Cattle †

Juan Haladjian 1,*, Johannes Haug 1, Stefan Nüske 2 and Bernd Bruegge 1

1 Lehrstuhl für Angewandte Softwaretechnik, Faculty of Informatics, Technical University Munich,
Bolzmannstr 3, 85748 München, Germany; johannes.haug@tum.de (J.H.); bruegge@in.tum.de (B.B.)

2 Lehr- und Versuchsgut Oberschleißheim, Faculty of Veterinary Medicine, Ludwig Maximilian University,
St. Hubertusstraße 12, 85764 München, Germany; stefan.nueske@lmu.de

* Correspondence: haladjia@in.tum.de; Tel.: +49-89-289-18235
† This paper is an extended version of our paper published in the Fourth International Conference on

Animal-Computer Interaction, Milton Keynes, United Kingdom, 21–23 November 2017.

Received: 17 April 2018; Accepted: 8 May 2018; Published: 15 May 2018
����������
�������

Abstract: Cow lameness is a common manifestation in dairy cattle that causes severe health and life
quality issues to cows, including pain and a reduction in their life expectancy. In our previous work,
we introduced an algorithmic approach to automatically detect anomalies in the walking pattern
of cows using a wearable motion sensor. In this article, we provide further insights into a system
for automatic lameness detection, including the decisions we made when designing the system,
the requirements that drove these decisions and provide further insight into the algorithmic approach.
Results from a controlled experiment we conducted indicate that our approach can detect deviations
in cows’ gait with an accuracy of 91.1%. The information provided by our system can be useful to
spot lameness-related diseases automatically and alarm veterinarians.

Keywords: gait analysis; anomaly detection; unsupervised machine learning

1. Introduction

Lameness is a manifestation of painful disorders that result in an impaired movement or deviation
from normal gait or posture [1]. In dairy cattle, the main causes of lameness are lesions in the
claws which cause bacterial infections and swelling in cows’ hooves and legs. Lameness causes
severe pain and is associated with health issues such as the loss of fertility. Furthermore, lameness
causes serious welfare and economic problems in the dairy industry. Some of the costs associated
with lameness are the need for veterinary treatment and a reduction in milk production and cow’s
reproductive performance. At advanced stages of the disease, a lame cow might die or have to
be sacrificed. Lameness is a common issue in dairy cows, with some stables having up to 72%
lame cows [1].

The earlier a lame cow is identified, the earlier the causes of the disorder can be treated. Currently,
lame cows are identified by visual inspection of their walking pattern, which is done by herdsmen.
However, automation and the rapid growth in livestock production have led to more cattle and less
employees per herd. As a consequence, herdsmen have less time to monitor the health condition
of their cows. Automated systems for cow milking, feeding and cleaning are already being used in
commercial herds. Neckbands with integrated motion sensors are used to predict whether a cow is
undergoing estrus (i.e., the period of sexual fertility in a female mammal). Veterinarians monitor cow
physical activity measured by these neckbands to determine the proper time to inseminate a cow.
In contrast, systems to detect lameness are rarely used in commercial herds, despite the variety of
solutions proposed by the scientific community.

Multimodal Technologies and Interact. 2018, 2, 27; doi:10.3390/mti2020027 www.mdpi.com/journal/mti

Multimodal Technologies and Interact. 2018, 2, 27 2 of 15

Approaches for automated lameness detection have been studied using computer vision, external
sensors such as pressure plates and wearable motion sensors. Most of the previous work on lameness
detection using wearable motion sensors studied how to keep track of a cow’s physical activity
(lying down, standing and walking) [2,3]. However, changes in physical activity due to lameness occur
at more advanced stages of the disorder. The first observable symptom of lameness is a change in a
cow’s usual walking pattern (i.e., gait).

This paper is an extended version of our previous work [4]. In our previous publication,
we presented a sensor device and a set of algorithmic steps to detect deviations in cows’ usual gait
using a wearable motion sensor. The sensor device attached to a cow’s hind limb is shown in Figure 1a.
Assuming a cow is able to walk normally at the time the sensor is attached to it, our approach creates
a model of the usual walking pattern of the cow using a combination of signal processing and machine
learning methods. A trained machine learning model is used to detect deviations from the usual gait
pattern of a cow later on.

In this article, we provide a more detailed insight of the algorithmic steps we introduced in [4,5].
Furthermore, we make our data available together with the publication, to facilitate the development
and validation of other methods that might lead to an improvement in the life quality of cows.
Furthermore, we list the requirements we elicited for a wearable sensor device for cows and describe
the design decisions we made during this project. The design decisions we made can be used as a basis
for designing future multimodal wearable sensing technologies for animals, as other wearable devices
for animals will share similar requirements (e.g., low energy consumption, device robustness and
waterproofness).

The rest of the paper is structured as follows:
Related Work: Provides an overview of other automated lameness detection systems and

highlights how our approach differs from them.
Study Design: Discusses how we designed a study to collect data from 10 cows in order to

develop and test our approach.
Requirements: Lists requirements we elicited for a wearable cow gait tracking system.
System Design: Lists the design decisions we made for a system able to detect lameness in dairy

cattle and explains the rationale behind them.
Approach: Describes our approach in detail including the hardware we designed and how we

process the signals acquired by the sensor device in order to classify cow strides into normal or abnormal.
Evaluation: Presents the results of a controlled experiment we conducted in order to validate

our approach.
Ethical Considerations: Discusses how we addressed the ethical guidelines in [6] during

our study.

(a) (b)

Figure 1. Motion sensor attached to a cow’s hind left leg taken from [4,5] (a) and sensor box (b).

Multimodal Technologies and Interact. 2018, 2, 27 3 of 15

2. Related Work

Most modern stables collect data from cows’ daily activity such as the amount of milk cows
yield and how much food they are fed. Different studies have suggested using this data to predict
lameness [7,8]. However, changes in milk yield and feeding behavior due to lameness might manifest
days after changes in gait. Detecting a lame cow based on its gait would make it possible to stop
further development of the disorder. This would allow veterinarians to treat the cause of the disorder
earlier, relieving the cow from pain and restoring its normal function.

Approaches for lameness detection based on gait analysis include those that use computer
vision, weight/force sensing or motion sensing. Computer vision approaches extract lameness related
information from a video recording, such as the arching of a cow’s back [9], the amount of overlapping
between a cow’s consecutive strides [10] and the angle at which a cow’s fetlock joint makes contact
with the ground during a stride [11]. Most of these studies have used normal cameras [9–11]. However,
Van Hertem et al. [12] studied lameness detection using a 3D camera and Eddy et al. [13] used
thermographic cameras.

Weight sensing approaches measure the weight a cow places on each limb while standing on force
plates [14] or walking over a force-sensitive mattress [15,16]. Based on this data, information about
cows’ walking and standing behavior is calculated, such as the length and duration of a stride [15,17],
the amount of kicks a cow performs while standing [14], the weight distribution under single
hooves [16–18] and the frequency of steps [16].

Computer vision and weight sensing approaches are limited to measuring a few strides per cow
and face additional challenges such as the fact that cows near the measuring area might disrupt the
measurements [1] and the need for additional technologies to identify the cow being measured.

Motion-based lameness detection approaches rely on motion sensors that are attached to
cows’ legs and/or neck. Most motion-based lameness detection approaches measure parameters
related to cows’ daily physical activity, such as the amount of time cows spend lying, standing and
walking [19,20], the number of strides cows perform per day [3] and the time of the days when cows
start and stop walking [21]. These approaches do not analyze gait per se, but predict lameness based
on cows’ daily activity.

A few studies—mostly coming from the veterinary medicine community—have investigated
cow lameness detection based on motion data. Pastell et al. [22] let lame and non-lame cows walk
with accelerometers attached to all four limbs and developed a method based on wavelet analysis
to predict the lameness. The study concluded that there is less symmetry in the acceleration of hind
legs in lame cows than in healthy cows. Chapinal et al. [23] combined an accelerometer device with
a weighing platform to measure the weight distribution, speed and number of steps performed by cows.
The system also determines whether cows are lying or standing. In a second study, Chapinal et al. [24]
found that the variance of acceleration of front and hind legs could be used to predict gait scores.

These studies compared lame cows with non-lame cows in order to discover differences in their
gait and hence, did not consider the differences in the physical behavior and tolerance to pain of
each individual cow. Alsaaod et al. [20] found that the variation of physical activity among cows
is significantly larger than the variation of physical activity caused by lameness. This suggests that
lameness should be regarded on an individual basis rather than comparing a cow’s motion to a baseline
established from other cows.

In contrast to previous approaches for lameness detection, our approach compares the gait of
a cow to a baseline established by the cow itself during the first hours of use. Our approach is based
in anomaly detection, a technique commonly used to detect bank fraud and intrusion in computer
networks. The challenge at detecting such events, is that the anomaly data is usually not available at
development time in order to train a computing device how to detect the abnormal events. Instead,
what these methods do is to learn what the “usual” events are and try to detect anything that is not
similar to them. Our approach learns the gait pattern of a particular cow and is able to detect deviations
from this gait pattern afterwards. A deviation from the normal gait is the first indicator of a possible

Multimodal Technologies and Interact. 2018, 2, 27 4 of 15

lameness. Our approach has two main advantages when compared to previous work on motion-based
lameness detection approaches: (1) it takes into consideration the uniqueness of each cow’s gait [20]
and (2) it requires a single motion sensor attached to a hind limb.

3. Study Design

As described in our previous publication [25], we collected data from 10 cows while walking with
our motion sensor attached to their hind left limb. Cows were chosen to maximize the diversity of
age, weight and breed. Table 1 displays demographic information about each cow. We conducted
five “runs” per cow. In each run, we let cows walk for approximately 7 min. In three of the runs,
cows walked normally and in the other two runs, cows walked with a plastic block attached to the
outer claw of either their left or right hind hoof. Runs were executed in different days. We performed
only one normal run for cow 4 because it was isolated into a different stable due to pregnancy during
the period this study lasted. Statistical information about the data we collected is shown in Table 1.

Figure 2a shows a plastic block attached to the outer claw of the left hind hoof of a cow. Among the
other approaches we considered to collect data to validate our algorithm, we found this approach to
be the most appropriate for an animal-centered research, because it does not involve pain (e.g., forcing
a lame cow to walk) and required a considerable shorter intervention to cows’ natural activity. The total
intervention lasted approximately 40 min in total as was spread among different days.

We designed the experiment to resemble the conditions in which our approach would be used.
We let cows walk in their usual environment rather than isolated walkways specially designed for
the experiment. Furthermore, we included motion data of periods when cows stopped walking, turned
and got bumped by other cows. Cows walked on two different types of ground: rubber and concrete.

(a) (b)

Figure 2. Plastic block attached to the outer claw of a cow’s left hind hoof taken from our previous
work [4] (a) and member of our team walking behind a cow in the indoor stable of the Ludwig
Maximilian University (LMU) Munich during the data collection (b).

Multimodal Technologies and Interact. 2018, 2, 27 5 of 15

Table 1. Demographic data of the cows that took part in the controlled experiment and statistical
information about the data we collected. GH = German Holstein, FV = Fleckvieh.

Demographics Data Collected

Age
(Years)

Weight
(Kg)

Race
(DH/FV)

Normal
(Minutes/Strides)

Right
(Minutes/Strides)

Left
(Minutes/Strides)

1 5 910 31.25/68.75 42.3/1136 6.1/171 6.2/212

2 5 680 68.75/31.25 28.8/985 7.1/181 8.2/231

3 5 720 43.75/56.25 37.7/1166 6.5/202 5.4/162

4 7 560 87.5/12.5 5.5/242 7.6/290 7.8/256

5 6 700 31.25/68.75 48.8/1276 11.9/244 12.1/355

6 4 780 62.5/37.5 20.1/643 5.8/191 6.2/208

7 3 680 0/100 26.3/888 6.1/250 6.4/261

8 5 640 100/0 44.5/1378 8.2/300 8.1/310

9 4 610 0/100 38.8/1410 6.1/203 7.6/241

10 3 700 0/100 24.7/824 7.8/227 7.2/208

4. Requirements

We elicited the requirements for a wearable sensor device in a series of interviews with a veterinary
research team from the Ludwig Maximilian University (LMU) and pilot studies at an indoor stable
in Munich, Germany. Paci et al. [26] suggested that a wearable device that is not directly relevant to
the animal’s intentions should ideally not get in its way (i.e., affect its daily activities or experiences).
To this end, our goal was to design a system that keeps track of the gait of cows with little influence in
their daily life.

Low energy consumption. An intervention to a cow’s natural activities is required every time
a battery has to be replaced. Furthermore, farmers might not have time to collect every sensor device in
an entire herd to replace a battery. Therefore, wearable devices to be used by herds of animals should
consume little power and remain functional without intervention from veterinarians for as long as
possible, ideally during the lifetime of the animal.

Attachment at a hind limb. The wearable device should be attached at a hind limb for three
main reasons. First, cows usually lie down with their front legs bent and spread out their hind legs
outwards. Second, when cows undergo oestrus, they jump with their front legs on other cows. Third,
lameness is usually associated with diseases (mostly infections) occurring on hind legs.

Water, dirt and weight resistant. Cows in indoor stables are in contact with excrement and urine.
Furthermore, cows might lick the device. In addition, cows might weight up to 1000 kg and might step
on another cow’s device with a sharp hoof. Therefore, the device should be water and dirt resistant
and be able to cope with high amounts of forces applied at its surface.

Deployment that maximizes use by cows. There might be little space in cow indoor stables for
deploying large devices and providing the device with power might require additional infrastructure.
In particular, power and cables are subject to the same robustness requirements mentioned in the
previous point. As a consequence, the deployment of a receiver device should take into account the
requirements for the device to function (e.g., access to power and connection to transmit data) as well
as the practices of the animal species (e.g., placement in the stable where cows walk regularly).

5. System Design

In this section, we list the main design decisions we made for an automated lameness detection
system. These decisions derive from the requirements elicited in the previous section.

Local computations. Streaming sensor data from a wearable device is (considerably) more energy
costly than performing computations locally. In order to reduce the energy consumption of the device,

Multimodal Technologies and Interact. 2018, 2, 27 6 of 15

we decided to perform computations and store computed results on the sensor device and transmit
them once a day while the cow is milked.

Custom sensor device. We decided to design our own sensor device with a flat and lightweight
form-factor in a robust plastic 3D printed material. The goal of our design was to minimize the risk
that a cow injures itself, other cows in the stable (e.g., by bumping the device onto other cows) or the
device itself.

Individualized tracking. Alsaaod et al. [20] showed that the variation of physical activity among
cows is significantly larger than the variation of physical activity caused by lameness. This suggests
that comparing a cow’s motion to a baseline established from other cows might not be insightful at
detecting lameness. The veterinarians we collaborated with stated that each cow has an individual
walking pattern and reacts differently to pain. For this reason, we decided to create an individual gait
profile for each cow and detect changes in their locomotion.

Receiver at milking robot. In order to minimize energy consumption, the data should be sent
from the wearable device to a nearby receiver. The milking robot represents a good place to collect
data recorded by a wearable device for two main reasons. First, cows usually visit the milking robot
twice a day. Second, cows remain still in the same area for several minutes during milking, which
represents an ideal opportunity for the data transmission.

6. Approach

In this section, we describe our approach for anomaly detection of a cow’s gait, including the
sensor device that senses motion data and computations it performs. Our approach consists of two
phases: the training phase and the detection phase. The training phase builds a model of the usual gait
of a cow using a machine learning algorithm. The procedure requires a cow to be healthy during
the first hours of use. The detection phase classifies the gait of a cow into normal or abnormal based on
a comparison of its current gait with the model created during the training phase. Both, the training
phase and detection phase require the following computations:

1. Data acquisition. The sensor signals are read from the sensor device and stored in memory.
2. Preprocessing. The data is organized in chunks and filtered to eliminate noise.
3. Stride segmentation. Cow strides are detected and their boundaries identified.
4. Feature extraction. Information describing of a cow’s gait is extracted from each stride.

These computations produce a set of features (i.e., information describing the gait of a cow).
This set of features is used during the training phase to train a machine learning model—we call this
Model Training. During the detection phase, the already trained machine learning model assigns a label
normal or abnormal to each set of features - we call this Classification. The following subsections describe
each of these computations in more detail. Figure 3 shows an overview of the different computations
performed by our approach.

6.1. Sensor Device

The sensor device consists of an electronic device, a battery to power it and a 3D printed enclosure.
The electronic device we designed is based on an ARM Cortex-M0 microcontroller, a 6-axis Inertial
Measurement Unit (IMU) and a Bluetooth Low Energy (BLE) module. The ARM Cortex-M0
microcontroller operates at 16 MHz and is characterized by its low-power consumption rate and
small footprint. The device has 128 kb of flash memory with 8 kb of ram. As a communication module,
we decided to use the BLE technology due to it’s low-power consumption rate. We designed the
electronic device as a two-layer printed circuit board (PCB) placing the motion sensor on the front side
and the microcontroller and BLE module on the back side. The dimensions of the electronic device
are 21 mm × 21 mm × 2.5 mm. Figure 4a shows the front and back sides of the device. The device
functions at 3.3 V and is powered by a 2000 mAh battery.

Multimodal Technologies and Interact. 2018, 2, 27 7 of 15

Figure 3. Overview of the Training and Detection phases. The features extracted are used during the
training phase to train a machine learning model which is used in the detection phase to classify new
feature vectors.

(a) (b)

Figure 4. Motion sensor and Eagle schematics for front and back sides of the Printed Circuit Board
(PCB) (a) and the orientation of our device (b). Our device is oriented such that the y-axis represents
vertical accelerations, the x-axis is parallel to the cow (i.e., in its walking direction) and the z-axis is
lateral (i.e., left and right) to a cow.

The enclosure we designed is shown in Figure 1b. We designed the enclosure to have rounded
corners and edges to avoid injuries to cows. The device has been printed with the Selective Laser
Sintering (SLS) 3D printing technique. This printing technique produces robust and relatively
lightweight objects with thin sides. We designed the enclosure in two parts such that a rubber
seal can be fit between them in order to make the enclosure water-proof to protect the electronic device
and battery from urine and excrement. According to a veterinarian, the sensor enclosure is “robust,
yet thin and lightweight for cows to wear” and “should be able to resist forces and strain caused by other cows
stepping on it”.

Multimodal Technologies and Interact. 2018, 2, 27 8 of 15

6.2. Data Acquisition

The sensor device measures linear acceleration (without gravity) and orientation (yaw, pitch,
roll) at 100 Hz along 3 axes (x,y,z). The accelerometer range is set to ±4 g. Data is obtained with
an analog-digital converter resolution of 16 bits. The orientation of the device is depicted in Figure 4b.
Data is stored in the device’s flash memory and processed every 128 samples (1.28 s). Figure 5a
illustrates how the data acquired by the device correlate to different stride phases.

(a) (b)

Figure 5. Raw acceleration (a) and low-pass filtered acceleration (b) for four strides. Forward
movements during a stride cause a positive acceleration along the x-axis. Hoof impacts with the
ground can be seen as peaks in the acceleration, particularly along the x- and y-axes. Periods while the
hoof is in contact with the ground (still phases) have almost zero acceleration.

6.3. Preprocessing

In the preprocessing stage, we filter the signal acquired by the sensor in order to eliminate
noise (i.e., information in the signal acquired not related to a cow’s gait). Noise might be introduced
by the sensor device (e.g., shaking at high frequencies caused by the accelerometer) or by sudden
movements such as when a cow is bumped by another cow in the stable. Therefore, we apply a first
order Butterworth low-pass IIR filter with a cutoff frequency of 20 Hz to the linear acceleration signal.
This filter leaves frequencies in the range 0–20 Hz almost unmodified and attenuates frequencies
higher than 20 Hz. A comparison of the signal before and after applying the filter is shown in Figure 5.

6.4. Stride Segmentation

The purpose of the Stride Segmentation is to detect the beginning and ending of a stride.
We segment the strides based on a peak detector. We use the acceleration along the x-axis based
on our observation that this axis has the strongest acceleration range during strides (as can be seen in
Figure 5). The Stride Segmentation is done in the following three steps:

1. Every stride has two upper peaks. We detect the highest peak with a peak detection algorithm.
We ignore peaks that are less than 60 samples away from a previously detected peak. This also
filters out periods when cows did not walk.

Multimodal Technologies and Interact. 2018, 2, 27 9 of 15

2. Every stride is preceded by periods of small variance in acceleration. We find these periods by
searching for the 9-sample window with smallest variance in acceleration among the 70 samples
before and after the detected peak. We call the center of these windows initial stride segments.

3. Between two initial stride segments, additional samples are included that might not belong
to a stride. Therefore, we trim the stride by shifting the initial stride segments towards the
peak detected in step 1. The initial stride segments are shifted until the standard deviation of
a 6-sample window centered at the shifted stride segment is larger than a constant θ. We found
θ = 0.2 empirically.

Figure 6a shows the linear acceleration along the x-axis of four consecutive strides with
annotations pointing at initial and trimmed stride segments.

(a) (b)

Figure 6. Initial and trimmed segments detected with our stride segmentation algorithm applied to
linear acceleration along the x-axis (a) and illustration of the gait features on the linear acceleration
along the x-axis (b).

6.5. Feature Extraction

For each stride segmented, we compute a set of gait and statistical features. Gait features are
measurements specific of a stride. Every stride is characterized by three peaks: two upper peaks and
one lower peak. We first detect all three peaks. If any of the peaks could not be found, we ignore
the stride. This might happen if the cow shortly lifted a leg or got bumped by another cow. For all
three peaks, we compute its peak value and rise time. The rise times are computed as the difference in
samples to the previous peak. The rise time of the first peak is computed as the difference in samples
to the first sample in the trimmed stride segment. In addition, the total duration of the stride is added
to the feature set. Figure 6b illustrates how the gait features are computed based on the three peaks of
a single stride.

Statistical features are measures to extract information from data sets. We extract the following
statistical features: mean, median, standard deviation, Zero Crossing Rate (ZCR), Peak-to-Peak
amplitude (P2P), Root Mean Square (RMS) and Average Acceleration Variation (AAV) for every stride.
ZCR is a measure of the amount of times a signal crosses the zero value. A high ZCR might indicate
a highly intense or periodic activity. P2P is the difference between the maximum and minimum
acceleration value in a stride and provides information about the intensity of a stride. RMS is the square

Multimodal Technologies and Interact. 2018, 2, 27 10 of 15

root of the mean of the values in a stride squared. This measurement provides information about the
amount of acceleration and variation in a stride. AAV is calculated as the sum of the absolute differences
between consecutive samples in a stride normalized by the number of samples. AAV provides
an indication of how sudden changes in acceleration happen within a stride. These measurements are
commonly used for activity recognition applications and have been recently used for fall-detection
and gait analysis in humans [27,28].

The list of gait and statistical features are enumerated in Table 2. Gait features are computed on
linear acceleration and statistical features are computed on linear acceleration, rotation and magnitude
of acceleration. ZCR is only computed on the linear acceleration. This gives us a total of 21 gait features
and 45 statistical features per stride. A window might contain several strides. We average the features
extracted from the same window. A vector containing the 66 averaged features is called stride instance.

6.5.1. Feature Normalization

After extracting these features, we normalize every feature in the stride instance to have zero
mean and a standard deviation in the range [−1, 1]. We do this by subtracting the mean and dividing
by the standard deviation of every stride instance used during the training phase. This is a required
computation for the machine learning algorithms. Not normalizing the features could cause features
with a large range of values to have a larger influence on the outcome of the classification.

6.5.2. Feature Grouping

After extracting and normalizing the features, we group consecutive stride instances by computing
the average of each feature Fi in γ consecutive strides. Reducing the number of stride instances that
have to be classified leads to less computations and a longer battery life. Furthermore, we observed that
grouping stride instances increased the accuracy of the classification. We determined γ = 3 empirically.

6.6. Model Training and Classification

The Model Training step trains a machine learning algorithm to classify stride instances as normal
or abnormal. It should be noted that Model Training and Classification are two different steps, as shown
in our overview in Figure 3. We describe both steps in this section because they are closely related to
each other.

To classify stride instances into normal and abnormal, we use a Support Vector Machine (SVM)
classifier. SVM is a classification algorithm that calculates a boundary that maximizes the distance
between instances of two different classes in an N-dimensional space. A one-class SVM classifier finds
a boundary around instances of one class and classifies new observations based on their distance to
this boundary. We train a one-class SVM classifier using normal stride instances.

The boundary of the classifier is defined such that a fraction ω of the instances is classified as
abnormal. The constant ω is used to define how ’compact’ the boundary around normal stride instances
is. A smaller ω leads to more stride instances classified as abnormal and a larger ω leads to more
instances classified as normal. The one-class SVM computes a distance dist(Si) for each new stride
instance Si. Our SVM classifier classifies stride instances as normal if dist(Si) < τ or as abnormal
otherwise. Figure 7 sketches the meaning of parameters ω and τ.

Multimodal Technologies and Interact. 2018, 2, 27 11 of 15

Figure 7. Green and red dots represent normal and abnormal stride instances, respectively. ω determines
the distance of the boundary to the normal stride instrances. τ is a threshold to the distance of stride
instances: stride instances with a distance larger than τ are classified as abnormal.

Table 2. Gait and statistical features used by our approach. Features labeled as accel are computed on
all three axes of the linear acceleration and features labeled as all are computed on every axis of the
linear acceleration, rotation and on the magnitude vector of the linear acceleration.

Feature Signal #

Gait

peak values accel 9

rise times accel 9

stride duration accel 3

Statistical

mean all 7

median all 7

STD all 7

ZCR accel 3

P2P all 7

RMS all 7

AAV all 7

Total 66

7. Evaluation

In this section, we present and discuss our results. Our approach intends to detect abnormal gait.
Therefore, our positive class is the class of abnormal stride instances. We define the following variables:

True Positive (TP) Amount of abnormal stride instances classified as such.
True Negative (TN) Amount of normal stride instances classified as such.
False Positive (FP) Amount of normal stride instances classified as abnormal.
False Negative (FN) Amount of abnormal stride instances classified as normal.

We validated our results based on the metrics: accuracy, specificity and sensitivity, defined
as follows:

• Accuracy: The ability of our approach to classify stride instances correctly. It answers the
question: “what percent of the classified stride instances is correct?”. Accuracy is calculated as:
(TN + TP)/(TN + TP + FN + FP).

• Specificity: The ability of our approach to identify normal stride instances. It answers the question:
“when a cow walks normally, what percent of its stride instances does our approach classify as ‘normal’?”.
This is also referred to as "true negative rate" and computed as: TN/(TN + FP).

• Sensitivity: The ability of our approach to identify abnormal stride instances. It answers the
question: “when a cow walks abnormally, what percent of its stride instances does our approach classify as
‘abnormal’?”. This is also referred to as “true positive rate” and computed as: TP/(TP + FN).

Multimodal Technologies and Interact. 2018, 2, 27 12 of 15

We computed the accuracy, specificity and sensitivity for a particular cow by means of the
leave-one-out cross-validation technique as follows:

1. We trained the SVM algorithm with N-1 normal stride instances, where N is the total number of
normal stride instances for a specific cow.

2. We used the model to classify the normal stride instance that was not used to train the algorithm
and every abnormal stride instance.

3. We repeated steps 1 and 2 N times; each time we left out a different normal stride instance.
4. We averaged the accuracies, specificities and sensitivities computed in step 3.

7.1. Results

Table 3 shows the accuracy, specificity and sensitivity of our approach for each cow. We used the
parameters: ω = 0.15 and τ = −0.6. We found these parameters empirically with the goal to maximize
the average accuracy of the classification for all cows. According to these results, our approach has
an average accuracy of 91.1% (specificity: 91.6% and sensitivity: 74.2%). These results imply that our
approach would classify 8.4% of the stride instances of cows walking normally as abnormal. In contrast,
when cows do indeed walk abnormally, our approach would classify 74.2% of their stride instances
as abnormal.

Table 3. Accuracy, specificity and sensitivity of our approach at detecting abnormal stride instances.
Parameters used were ω = 0.15 and τ = −0.6.

Accuracy Specificity Sensitivity

1 95.8% 96.3% 83.3%

2 94.6% 95.1% 78.6%

3 81.9% 82.0% 78.6%

4 96.4% 97.2% 66.7%

5 97.3% 97.6% 80.0%

6 81.3% 81.7% 70.6%

7 95.4% 96.6% 62.5%

8 92.6% 93.0% 77.8%

9 87.2% 87.6% 73.1%

10 88.2% 88.7% 70.6%

7.2. Discussion

The results we obtained suggest that our approach is able to detect a deviation from a cow’s
usual walking pattern after this deviation occurs. These results meet the requirements of the system
we propose, as stride classifications are meant to be tracked over time rather than used in isolation.
In particular, missing steps of a lame cow (i.e., a low sensitivity) is acceptable because a cow will
perform several steps a day even if it is lame (e.g., to get access to food). The lowest sensitivity obtained
by our approach was 62.5% (for cow #7). That means 62.5% of its steps would still be detected and
could be used to determine whether the cow needs treatment. Furthermore, our approach would
be able to emit alerts if a cow should reach an advanced stage of a lameness disease that prevents it
from walking altogether. On the other hand, a low specificity could make veterinarians loose trust
in our system. The lowest specificity we obtained was 81.7% (for cow #6). This indicates 18.3% of
its strides would be detected as abnormal when the cow is actually walking normally. However,
18.3% abnormal step detection would be usual for this cow, and would suddenly rise to 70.6% when
it becomes lame. Figure 8 shows an example illustrating how the gait for a particular cow could be
shown by a user interface.

Multimodal Technologies and Interact. 2018, 2, 27 13 of 15

We argue that the deviation from normal gait caused by lameness is more radical than the change
in gait caused by the plastic block which we used to obtain a ground truth set in our study. This is
because cows suffering lameness will try to avoid pain by bearing as little weight as they need to on
the affected hoof. As a consequence, lame cows perform considerably shorter strides or stop using
one limb all together. This causes an asymmetry in the gait, which is observable visually. In contrast,
the change caused by the plastic block is more subtle. We were not able to assess visually whether
a cow was walking with a plastic block or not by looking at its gait. As a consequence, we believe our
approach might be more accurate at detecting deviations in gait caused by lameness than those caused
by a plastic block.

(a) (b)

Figure 8. Visualization of the average classification performance of our approach for a cow walking
normal (a) and after it becomes lame (b).

8. Ethical Considerations

Our research required cows to take part in an experiment. In order to ensure an ethically
appropriate treatment of the cows during our experiment, we designed it based on the ethical
guidelines proposed by Mancini [6] as follows:

1. Respecting and caring for every participant without discrimination. The participants of this experiment
were cows of different ages and breeds. We did not harm any of the them or make any
discrimination as for the selection of the specific cow subjects or treatment they received during
the experiment.

2. Garnering participants mediated and contingent consent. We conducted this experiment together with
a professional veterinarian team who are the legal representatives of the cows that participated in
the experiment. Both veterinarians know the needs and welfare requirements of these cows and
gave us their consent to conduct the experiment. Furthermore, they accompanied and supported
us throughout the entire experiment to ensure these requirements were met.

3. Doing research that is relevant to participants and consistent with their welfare. The results of our
research suggest that it is possible to automatically detect a condition that is painful for cows
and highly detrimental to their health (e.g., might lead to death if not treated early enough).
Therefore, our research has the potential to benefit the individual cows that participated in the
experiment, as well as other cows. This research was conducted in the natural environment of
the participating cows, an indoor stable located in the outskirts of Munich, Germany.

4. Avoiding research procedures that may be harmful to participants. According to the veterinarians that
supported us throughout this study, attaching a sensor device and plastic block to cows and
encouraging them to walk for less than 10 min did not cause any lasting harm to these cows.
Veterinarians trimmed cows before attaching the plastic block to ensure the block was placed and
fit properly to the claw. Trimming cow claws is a procedure undertaken to maintain a healthy
hoof condition and prevent injury and disease. In addition, we limited the walking sessions to
a maximum of 10 min per day and continued the data recording on a different day in order to
reduce the level of fatigue caused to the cows.

Multimodal Technologies and Interact. 2018, 2, 27 14 of 15

5. Assessing research proposals and obtaining expert support. The cow interventions performed in this
study were done by professional veterinarians and were approved by the ethics committee of
the Ludwig Maximilian University (LMU) in Munich, Germany to ensure no harm was done to
the cows.

9. Conclusions

We presented and evaluated a system to detect changes in cows’ usual gait that might occur due
to a lameness-related disease. Our approach considers the differences in gait of a cow by comparing
its walking pattern to a baseline established for that particular cow during the first hours of use.
Our system could be used by veterinarians to keep track of the health condition of the cows in a herd.
In particular, veterinarians might decide to examine a cow if the number of detected abnormal stride
instances has exceeded considerably the usual amount for that particular cow.

In the future, our approach will have to be validated in a longer-term field study. In particular,
it would have to be studied how veterinarians use our system in practice (e.g., how much they trust
our system even in the presence of false positive detections). Furthermore, the usage of our system
be validated for a longer period of time to study possible long-term effects that we did not observe
during our first study. Furthermore, the energy consumption and battery duration of the wearable
device should be optimized in a way that does not affect the accuracy of the stride classification.

Author Contributions: Ju.H., S.N. and B.B. conceived the experiments to collect cow gait data; Ju.H. and Jo.H.
analyzed the data and developed the algorithms; Ju.H. wrote this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Van Nuffel, A.; Zwertvaegher, I.; Van Weyenberg, S.; Pastell, M.; Thorup, V.M.; Bahr, C.; Sonck, B.; Saeys, W.
Lameness detection in dairy cows: Part 2. Use of sensors to automatically register changes in locomotion or
behavior. Animals 2015, 5, 861–885. [CrossRef] [PubMed]

2. Nielsen, L.R.; Pedersen, A.R.; Herskin, M.S.; Munksgaard, L. Quantifying walking and standing behaviour
of dairy cows using a moving average based on output from an accelerometer. Appl. Anim. Behav. Sci. 2010,
127, 12–19. [CrossRef]

3. Mazrier, H.; Tal, S.; Aizinbud, E.; Bargai, U. A field investigation of the use of the pedometer for the early
detection of lameness in cattle. Can. Vet. J. 2006, 47, 883. [PubMed]

4. Haladjian, J.; Hodaie, Z.; Nüske, S.; Brügge, B. Gait Anomaly Detection in Dairy Cattle. In Proceedings of the
Fourth International Conference on Animal-Computer Interaction; ACM: New York, NY, USA, 2017; pp. 8:1–8:8.
[CrossRef]

5. Haladjian, J.; Brügge, B.; Nüske, S. An approach for early lameness detection in dairy cattle. In Proceedings
of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings
of the 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017;
pp. 53–56.

6. Mancini, C. Towards an animal-centred ethics for Animal–Computer Interaction. Int. J. Hum.-Comput. Stud.
2017, 98, 221–233. [CrossRef]

7. Hertem, T.V.; Maltz, E.; Antler, A.; Romanini, C.E.B.; Viazzi, S.; Bahr, C.; Schlageter-Tello, A.; Lokhorst, C.;
Berckmans, D.; Halachmi, I. Lameness detection based on multivariate continuous sensing of milk yield,
rumination, and neck activity. J. Dairy Sci. 2013, 96, 4286–4298. [CrossRef] [PubMed]

8. De Mol, R.M.; André, G.; Bleumer, E.J.B.; der Werf, J.T.N.; De Haas, Y.; Van Reenen, C.G. Applicability of
day-to-day variation in behavior for the automated detection of lameness in dairy cows. J. Dairy Sci. 2013,
96, 3703–3712. [CrossRef] [PubMed]

9. Poursaberi, A.; Bahr, C.; Pluk, A.; Van Nuffel, A.; Berckmans, D. Real-time automatic lameness detection
based on back posture extraction in dairy cattle: Shape analysis of cow with image processing techniques.
Comput. Electron. Agric. 2010, 74, 110–119. [CrossRef]

Multimodal Technologies and Interact. 2018, 2, 27 15 of 15

10. Song, X.; Leroy, T.; Vranken, E.; Maertens, W.; Sonck, B.; Berckmans, D. Automatic detection of lameness in dairy
cattle-Vision-based trackway analysis in cow’s locomotion. Comput. Electron. Agric. 2008, 64, 39–44. [CrossRef]

11. Pluk, A.; Bahr, C.; Poursaberi, A.; Maertens, W.; Van Nuffel, A.; Berckmans, D. Automatic measurement of
touch and release angles of the fetlock joint for lameness detection in dairy cattle using vision techniques.
J. Dairy Sci. 2012, 95, 1738–1748. [CrossRef] [PubMed]

12. Van Hertem, T.; Viazzi, S.; Steensels, M.; Maltz, E.; Antler, A.; Alchanatis, V.; Schlageter-Tello, A.A.;
Lokhorst, K.; Romanini, E.C.B.; Bahr, C.; et al. Automatic lameness detection based on consecutive 3D-video
recordings. Biosyst. Eng. 2014, 119, 108–116. [CrossRef]

13. Eddy, A.L.; Van Hoogmoed, L.M.; Snyder, J.R. The role of thermography in the management of equine
lameness. Vet. J. 2001, 162, 172–181. [CrossRef] [PubMed]

14. Pastell, M.; Kujala, M. A Probabilistic Neural Network Model for Lameness Detection. J. Dairy Sci. 2007,
90, 2283–2292. [CrossRef] [PubMed]

15. Maertens, W.; Vangeyte, J.; Baert, J.; Jantuan, A.; Mertens, K.C.; De Campeneere, S.; Pluk, A.; Opsomer, G.;
Van Weyenberg, S.; Van Nuffel, A. Development of a real time cow gait tracking and analysing tool to assess
lameness using a pressure sensitive walkway: The GAITWISE system. Biosyst. Eng. 2011, 110, 29–39. [CrossRef]

16. Chapinal, N.; Tucker, C.B. Validation of an automated method to count steps while cows stand on a weighing
platform and its application as a measure to detect lameness. J. Dairy Sci. 2012, 95, 6523–6528. [CrossRef]
[PubMed]

17. Van Nuffel, A.; Vangeyte, J.; Mertens, K.C.; Pluym, L.; De Campeneere, S.; Saeys, W.; Opsomer, G.;
Van Weyenberg, S. Exploration of measurement variation of gait variables for early lameness detection in
cattle using the GAITWISE. Livest. Sci. 2013, 156, 88–95. [CrossRef]

18. Der Tol, P.P.J.; Metz, J.H.M.; Noordhuizen-Stassen, E.N.; Back, W.; Braam, C.R.; Weijs, W.A. The pressure
distribution under the bovine claw during square standing on a flat substrate. J. Dairy Sci. 2002, 85, 1476–1481.
[CrossRef]

19. Thorup, V.M.; Munksgaard, L.; Robert, P.E.; Erhard, H.W.; Thomsen, P.T.; Friggens, N.C. Lameness detection
via leg-mounted accelerometers on dairy cows on four commercial farms. Animal 2015, 9, 1704–1712.
[CrossRef] [PubMed]

20. Alsaaod, M.; Römer, C.; Kleinmanns, J.; Hendriksen, K.; Rose-Meierhöfer, S.; Plümer, L.; Büscher, W.
Electronic detection of lameness in dairy cows through measuring pedometric activity and lying behavior.
Appl. Anim. Behav. Sci. 2012, 142, 134–141. [CrossRef]

21. Yunta, C.; Guasch, I.; Bach, A. Short communication: Lying behavior of lactating dairy cows is influenced by
lameness especially around feeding time. J. Dairy Sci. 2012, 95, 6546–6549. [CrossRef] [PubMed]

22. Pastell, M.; Tiusanen, J.; Hakojärvi, M.; Hänninen, L. A wireless accelerometer system with wavelet analysis
for assessing lameness in cattle. Biosyst. Eng. 2009, 104, 545–551. [CrossRef]

23. Chapinal, N.; De Passillé, A.M.; Rushen, J.; Wagner, S. Automated methods for detecting lameness and
measuring analgesia in dairy cattle. J. Dairy Sci. 2010, 93, 2007–2013. [CrossRef] [PubMed]

24. Chapinal, N.; de Passille, A.M.; Pastell, M.; Hänninen, L.; Munksgaard, L.; Rushen, J. Measurement of
acceleration while walking as an automated method for gait assessment in dairy cattle. J. Dairy Sci. 2011,
94, 2895–2901. [CrossRef] [PubMed]

25. Haladjian, J.; Ermis, A.; Hodaie, Z.; Brügge, B. iPig: Towards Tracking the Behavior of Free-roaming Pigs.
In Proceedings of the Fourth International Conference on Animal-Computer Interaction; Milton Keynes, UK,
21–23 November 2017; pp. 10:1–10:5. [CrossRef]

26. Paci, P.; Mancini, C.; Price, B.A. Towards a wearer-centred framework for animal biotelemetry. In Proceedings
of the Measuring Behaviour 2016, Dublin, Ireland, 25–27 May 2016.

27. Cola, G.; Avvenuti, M.; Vecchio, A.; Yang, G.Z.; Lo, B. An on-node processing approach for anomaly detection
in gait. IEEE Sens. J. 2015, 15, 6640–6649. [CrossRef]

28. Abbate, S.; Avvenuti, M.; Bonatesta, F.; Cola, G.; Corsini, P.; Vecchio, A. A smartphone-based fall detection
system. Pervasive Mob. Comput. 2012, 8, 883–899. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

CHAPTER 6. PUBLICATIONS

6.7 KneeHapp Textile: A Smart Textile System for
Rehabilitation of Knee Injuries

This publication describes a smart textile bandage and companion iPad and Apple
Watch applications to track the performance of different rehabilitation exercises per-
formed by patients recovering from an Anterior Cruciate Ligament (ACL) injury. This
paper presents a novel calibration technique to measure the degree of flexion of a leg
using a motion sensor, describes the signal processing methods used by the system
and provides an evaluation of the usability of the system.

The author of this Habilitation led the development of the system, studied different
activity recognition methods to assess the execution of the different rehabilitation
exercises and wrote the paper.

Authors Haladjian, J., Bredies, K., & Bruegge, B.
Conference International Conference on Wearable and Implantable

Body Sensor Networks (BSN)
Number of Pages 4
Type Short Paper
Review Peer Reviewed (3 Reviewers)
Year 2018
DOI 10.1109/BSN.2018.8329646

120

KneeHapp Textile: A Smart Textile System for Rehabilitation of Knee
Injuries

Juan Haladjian1, Katharina Bredies2 and Bernd Brügge1

Abstract— Patients of an Anterior Cruciate Ligament (ACL)
injury engage in a set of rehabilitation exercises to recover
mobility and strength of their injured leg. We developed a
smart bandage and user interface that provides live feedback to
patients while exercising and computes a series of performance
metrics used by orthopedists for assessment of the patient’s
recovery. The bandage uses smart textile components such as
elastic conductive threads and snap buttons. We discuss how the
smart textile components contribute to desirable properties of
the bandage, such as robustness, washability and user comfort.
Furthermore, we present a technique for calibrating the motion
sensors on the bandage which is suitable for patients of ACL
with limited mobility. Finally, we present the results of a
controlled experiment with 10 patients with the goal to assess
the accuracy of the bandage’s measurements.

I. INTRODUCTION

Tear of Anterior Cruciate Ligament (ACL) is a severe knee
injury that occurs mostly among athletes. The rehabilitation
after the injury can last as long as a year and often includes
physical therapy, strength exercises and frequent visits to
physiotherapists and doctors. Successful recovery of an ACL
injury relies on the appropriate execution of rehabilitation
exercises with the goal of recovering full range of motion,
strength and coordination.

Currently, patients sustaining an ACL injury perform the
rehabilitation exercises mostly unsupervised and lack quan-
titative ways to measure the quality and track performance
of their exercising. Orthopedists also lack tools to assess
patients’ rehabilitation progress and still have to rely on
subjective observations. Furthermore, orthopedists and pa-
tients meet at time intervals as long as three months and the
treatment is decided upon observations during these meetings
without consideration of the patient’s recovery progress in
the periods between visits.

In this paper, we introduce KneeHapp Textile, a smart
compression bandage that supports different rehabilitation
exercises performed by patients recovering from an ACL
injury in order to recover flexibility and muscle strength. We
address the construction and integration of textile sensors
and connections and propose software solutions to quantify
the progress of the rehabilitation after the ACL injury. We
present KneeHapp’s user interface on an iPad and Apple
Watch.

1Juan Haladjian and Bernd Brügge are with Chair for Applied Software
Engineering, Faculty of Computer Science at the Technical University
Munich

2Katharina Bredies is with the Design Research Lab at the University of
Arts Berlin

Corresponding author is Juan Haladjian: haladjia@in.tum.de

II. RELATED WORK

Different studies have investigated rehabilitation using
wearables and mobile devices [5], [2]. In contrast, only a few
studies have used smart textiles to support rehabilitation after
an injury [3], [4], [1]. In addition, most of the research in the
field of computer-assisted rehabilitation addresses injuries
other than ACL. In contrast to other injuries (e.g. osteoarthri-
tis), patients recovering from ACL injury are athletes that
want to take up their training routines after recovery. As a
consequence, the rehabilitation of an ACL injury involves a
series of exercises to recover mobility and strength of the
injured leg and to ensure the athlete is ready to go back
to sports. We investigate the application of smart textile
technologies to exercise-intensive rehabilitation processes.

III. REQUIREMENTS

Based on a series of interviews with two professional
orthopedists who conduct ACL reconstruction surgeries on
a daily basis, we identified a set of rehabilitation exercises
performed by patients recovering from an ACL injury:

• Knee bends. After the surgery, patients perform mostly
knee bends to recover mobility of their knees.

• Squats. During the first weeks after the surgery, patients
suffer from muscular atrophy on the injured leg. A
common exercise for strength recovery are knee squats
and different variations of it.

• One-leg hop. Towards the end of the rehabilitation,
orthopedists should assess whether patients are ready
to start doing sports again. One-leg hop is an exercise
in which patients should jump forward on one leg as
far as possible and land stably.

• Side hops. Another exercise to assess patients perfor-
mance and strengthen muscle is side hops. Side hops
requires patients to hop side-wise on one leg over a
distance of 20-30 cm during a period of 10 to 60
seconds.

IV. KNEEHAPP

KneeHapp measures the performance and provides live
feedback to patients while performing different ACL rehabil-
itation exercises. The KneeHapp system consists of a smart
compression bandage, an iPad App. The smart compression
bandage acquires and processes sensor data and delivers the
computed results to the iPad App via Bluetooth Low Energy.
The iPad App displays live feedback about the quality of the
rehabilitation exercises and keeps track of the rehabilitation
performance. An additional interface on the Apple Watch lets

978-1-5386-1109-8/18/$31.00 ©2018 IEEE 9

2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN)
4-7 March 2018
Las Vegas, Nevada, USA

Fig. 1: Outer layer (left) and inner layer (right) of the
KneeHapp bandage.

Fig. 2: Smart textile patches hosting a microcontroller (left)
and a battery holder (right).

patients to control specific parameters during an exercising
session.

A. Smart Textile Bandage

We adapted a conventional compression bandage used by
patients to reduce swelling after a knee surgery. We used
this compression bandage as a substrate for integration of
electronics. The outer side of the bandage hosts two motion
sensors, two microcontrollers and a coin cell battery holder.
The inner side contains an electric circuit made of elastic
conductive threads. An additional sleeve in the inner side
protects the circuits from sweat and can be removed for
washing purposes. Figure 1 shows outer and inner layers
of the bandage.

We decided to connect the electronics to the electric circuit
using elastic conductive thread based on three main design
goals: robustness, user comfort and low energy consumption.
Elastic conductive threads are less prone to snapping when
compared to other materials to connect electronic devices
such as conventional cables or conductive thread. This is of
particular relevance because connections laid along the knee
are prone to a considerable amount of strain while patients
perform exercises involving knee bends. We also considered
a design involving two separate microcontroller units that
transmit data wirelessly. We discarded this design because
the need for wireless data transmission to synchronize the
signals produced by upper and lower microcontroller units

would increase energy consumption rates considerably. Fur-
thermore, conductive threads do not constrain user move-
ments more than the actual bandage.

All conventional electronic elements are sewn on smart
textile patches and equipped with snap buttons as conductive
contacts to the main bandage. This enables users to remove
the electronics for replacement or washing purposes. Figure
2 shows two smart textile patches.

B. Software Computations

KneeHapp supports different rehabilitation exercises. This
section describes how KneeHapp processes data from the
aforementioned sensors in order to provide feedback to
patients while exercising and compute performance metrics
that can be tracked over time.

1) Range of Motion: KneeHapp calculates the angle of
flexion of the leg based on the Euler angles computed by
lower and upper IMUs. KneeHapp supports two calibration
approaches. By convention, the angle of flexion of the leg
is equal to zero when the leg is relaxed on a flat surface.
Therefore, one calibration approach supported by KneeHapp
determines the sensor alignment while patients extend their
leg on a flat surface. However, most patients are not able to
fully extend their leg after the surgery. In order to address
this issue, we considered different calibration approaches
proposed in the literature, including pose (i.e. users perform
a predefined pose) and functional (i.e. users perform specific
movements) calibration. But since patients might not be able
to perform specific poses or movements after surgery, we
devised a novel calibration approach that consists of three
steps:

1) Wear the bandage on the healthy leg and measure the
orientation of the IMU while the leg is laid on a flat
surface.

2) Measure the angle of flexion while the leg is slightly
bent by placing the back of the knee on top of any
object. This provides a calibration offset.

3) To ’transfer’ the calibration offset to the injured leg, the
user should wear the bandage on the injured leg and
measure the angle of flexion while placing the back of
the knee on top of the same object.

These steps are illustrated in Figure 3. Because the angle
of flexion is measured on top of the same object for both
legs, the angle of flexion for both legs is, by definition, the
same. The difference between the measured angles of flexion
is used as an offset and added to the angles measured on the
injured leg. This calibration approach does not require addi-
tional equipment such as wedges or individuals who perform
the measurements. KneeHapp provides visual feedback live
to patients about their current angle of flexion and about the
maximal angles of flexion, extension, and hyper-extension
(i.e. extending a limb over 180°) of the leg, as shown in
Figure 4.

2) One-leg Squat: KneeHapp provides live feedback to
patients while performing one-leg squats in three ways. First,
it calculates the angle of flexion of the leg during the squat
and triggers a visual and auditive feedback when patients

10

Fig. 3: Illustration of our calibration procedure with an example. In step 1, KneeHapp is calibrated on the healthy leg, which
the patient can extend on a flat surface. In step 2, KneeHapp calculates the angle of flexion while the leg is placed above an
object. In step 3, KneeHapp assumes the angle of flexion of the injured leg is the same as on the healthy leg when placed
on the same object. After step 3, patients can begin to calculate the range of motion of their injured knee.

achieve a squat angle of 60°. Second, it computes the degree
of medial collapse of a patient’s knee and warns patients
in case they reach a threshold of 10°. Third, it computes
the degree of shaking of the leg, which is computed as the
standard deviation of the magnitude of the linear acceleration
produced by the IMUs.

3) One-leg Hop: KneeHapp measures and keeps track of
the performance of one-leg hops by comparing the duration
of the hop done with each leg. This is done in two steps.
First, a second order Butterworth low-pass filter is applied
to reduce noise in the signal acquired by the upper motion
sensor with a cutoff = 15Hz. Second, the different phases
of the jump (i.e. jumping, flying, landing) are estimated using
a pre-established set of thresholds calibrated to each phase.

4) Side Hops: KneeHapp counts the number of side
hops performed by patients in a configurable period of
time. This is done in three steps: preprocessing, detection
and disambiguation. In the preprocessing step, the linear
acceleration along the vertical and forward axes are filtered
using a Resistor-Capacitor (RC) low-pass filter with a time
constant τ = 0.25. Usually, each hop performed by the user
produces a high and a low peak in the signal. The detection
step uses a peak detection algorithm to count the number
of high and low peaks in the filtered signal. In order to
avoid counting bumps caused when patients do not land
stably after a hop, KneeHapp ignores peaks with a distance
smaller or equal to 15 samples to a previously detected peak.
The disambiguation step compares the number of lower and
upper peaks detected and returns the median.

C. User Interface

KneeHapp’s user interface is displayed on an iPad and
Apple Watch. The iPad enables patients to keep track of
their rehabilitation progress and provides live feedback while
exercising. Figure 4 shows a screenshot of the iPad inter-
face displaying the angles of flexion, extension and hyper-
extension computed by KneeHapp.

The interface on the Apple Watch enables patients to
start and stop the exercises and provides feedback about
the quality of the performed exercises. Starting and stopping
exercises directly from the wrist is convenient at the begin-
ning of the rehabilitation because patients might have limited

Fig. 4: iPad App displaying the Exercises tab. The Exercises
tab provides live feedback about the performance of the
selected exercise.

Fig. 5: Interface on the Apple Watch displaying instructions
to start the range of motion measurement (left) and the
computed angles during a squat (right).

mobility and towards the end because patients perform squats
and jump-based exercises. The interface on the Apple Watch
also displays exercise countdowns, angles of flexion of the
leg and indicates when specific angles have been reached
(e.g. medial collapse) by means of vibrations and sound.
Figure 5 shows two screenshots of the interface on the Apple
Watch for the Range of Motion and Squat exercises.

11

TABLE I: Answers to a usability questionnaire given to
patients. -2: Strongly disagree; -1: Disagree; 0: Neutral; +1:
Agree; +2: Strongly Agree.

-2 -1 0 +1 +2
KneeHapp provides me with helpful
information during the Range
of Motion exercise

0 0 0 2 3

KneeHapp provides me with helpful
information during the One-Leg Squat
exercise

0 0 0 3 2

KneeHapp helps me to perform
the One-Leg Squat exercise correctly 0 0 0 4 1

The iPad and Watch App were
easy to use 0 0 0 4 1

The bandage was comfortable to wear 0 0 1 3 1
KneeHapp would motivate me
to perform my rehabilitation exercises 0 0 1 1 3

I would use KneeHapp 0 0 0 3 2

V. CONTROLLED EXPERIMENT

We evaluated the accuracy of the computations performed
by KneeHapp in a controlled experiment where we collected
sensor data from 10 patients (3 female, 7 male, age range:
20-26, one of them was 51 years old) at different stages
in the recovery after an ACL injury while performing the
following exercises: range of motion measurements, one-leg
hops and side-hops, as follows:

1) Range of Motion: We calibrated KneeHapp with our
calibration approach and measured four different angles
of flexion per leg. In total, we measured 80 angles. We
considered three approaches to obtain reference angles of
flexion. In contrast to other studies, we decided not to use a
goniometer as reference because measurements taken from
goniometers are subjective to each observer [6]. Another
approach we considered was placing point markers at the
ankle, knee and hips to reconstruct the actual positions of the
bones. However, we discarded this approach because of the
difficulty to locate specific bones accurately on some subjects
due to muscle and fat. We decided to align straight markers
along the subject’s upper and lower leg and calculated the
angle between the markers digitally on a 2D photograph. The
angles of flexion calculated by KneeHapp correlated to the
reference angles with an average error of 4.82°(± 3.92°).
These results suggest KneeHapp provides more accurate
measurements than goniometers, which have been shown to
have an average intra-observer variability of 9.6°[6].

2) One-leg Hop: We asked subjects to perform a total of
six hops (a short hop, a middle hop and a long hop, once
on each leg). We collected a total of 60 hops. We placed a
camera at ground level and recorded jumps at 240 frames per
second. We determined the duration of each hop by counting
the amount of frames elapsed between jumping and landing
in the video recordings. We considered as a jumping frame
the first frame in which the subject’s foot was not in contact
with the ground anymore and landing frame as the first frame
where the foot made contact with the ground again. We mea-
sured the absolute difference between the calculated duration
and the reference duration and normalized the difference by
the reference duration. KneeHapp detected jump durations

with an average accuracy of 77.10% (± 18.57%).
3) Side Hops: We asked subjects to perform as many side

hops as they could in a period of 10 seconds. In order to
capture the differences in strength and motoric skills between
individuals’ primary and secondary legs, subjects performed
side hops on both legs. We collected a total of 395 hops.
In order to obtain reference values, we counted and video-
recorded the hops performed by the subjects. KneeHapp
computed the amount of side-hops performed by subjects
with an average accuracy of 96.8% (± 22%).

We evaluated the squat exercise qualitatively together with
the usability of KneeHapp in a series of interviews with
patients of an ACL injury. We improved KneeHapp with
the insights gained during these interviews and handed in a
questionnaire at the end, which is shown in Table I.

The results presented in this section meet the accuracy
requirements of a system to support the rehabilitation after
an ACL injury, as they are meant to aid orthopedists to make
treatment decisions. In particular, a performance score for
each leg could be computed based on several repetitions
of the assessment exercises. The improvement of this score
over time together with the score attained when performing
the exercises with the non-injured leg could be provided to
orthopedists to support them at making treatment decisions.

VI. CONCLUSION

We presented KneeHapp Textile, a smart textile system
that supports different rehabilitation exercises performed
throughout the rehabilitation of an ACL injury. The results
of our controlled experiment suggest that KneeHapp Textile
computes the different exercise performance metrics reliably.
Therefore, KneeHapp can be used by patients to obtain live
feedback about the execution of the exercises (e.g., shaking
and deviation during a squat) and by orthopedists to make
better-informed treatment decisions.

REFERENCES

[1] Swamy Ananthanarayan, Miranda Sheh, Alice Chien, Halley Profita,
and Katie Siek. Pt Viz: Towards a Wearable Device for Visualizing Knee
Rehabilitation Exercises. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’13, pages 1247–1250, New
York, NY, USA, 2013. ACM.

[2] Mobolaji Ayoade and Lynne Baillie. A Novel Knee Rehabilitation
System for the Home. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’14, pages 2521–2530, New
York, NY, USA, 2014. ACM.

[3] Ceara Ann Byrne, Claudia B Rebola, and Clint Zeagler. Design
Research Methods to Understand User Needs for an Etextile Knee
Sleeve. In Proceedings of the 31st ACM International Conference on
Design of Communication, SIGDOC ’13, pages 17–22, New York, NY,
USA, 2013. ACM.

[4] Guido Gioberto, Cheol-Hong Min, Crystal Compton, and Lucy E
Dunne. Lower-limb Goniometry Using Stitched Sensors: Effects of
Manufacturing and Wear Variables. In Proceedings of the 2014 ACM
International Symposium on Wearable Computers, ISWC ’14, pages
131–132, New York, NY, USA, 2014. ACM.

[5] Juan Haladjian, Zardosht Hodaie, Han Xu, Mertcan Yigin, Bernd
Bruegge, Markus Fink, and Juergen Hoeher. KneeHapp: A Bandage
for Rehabilitation of Knee Injuries. In Proceedings of the 2015
ACM International Symposium on Wearable Computers, pages 181–
184. ACM, 2015.

[6] Matthew Ockendon and Robin Gilbert. Validation of a Novel Smart-
phone Accelerometer-Based Knee Goniometer. Journal of Knee
Surgery, 25(04):341–346, may 2012.

12

6.8. IPIG: TOWARDS TRACKING THE BEHAVIOR OF FREE-ROAMING PIGS

6.8 iPig: Towards Tracking the Behavior of Free-
roaming Pigs

This publication presents an application to track the activities of free-roaming pigs
in rural regions in Africa. The motivation for this work is to provide veterinarians a
better insight into the behaviors of pigs that cause them to get infected with parasites
(e.g. Taenia solium) that can be transmitted to humans through the ingestion of
uncooked meat. This paper presents an activity recognition algorithm, a system
architecture to enable veterinarians to track their pigs’ locations live and discusses an
approach to track pig positions using a small sized device with low energy consumption
rates.

The author of this Habilitation elicited the requirements for an activity tracker
for pigs in collaboration with veterinarians and led a team of students who developed
the user interface. Furthermore, he collected data from a pig in a stable in Munich,
studied the performance of an activity recognition system and wrote the paper.

Authors Haladjian, J., Ermis, A., Hodaie, Z., & Bruegge, B.
Conference Fifth International Conference on Animal-Computer

Interaction
Number of Pages 5
Type Short Paper
Review Peer Reviewed (3 Reviewers)
Year 2017
DOI https://doi.org/10.1145/3152130.3152145

125

iPig: Towards Tracking the Behavior of Free-roaming Pigs
Juan Haladjian

Technical University Munich
Munich, Germany

haladjia@in.tum.de

Ayca Ermis
Georgia Institute of

Technology
Georgia, USA

aycaermis@gatech.edu

Zardosht Hodaie
Technical University Munich

Munich, Germany
hodaie@in.tum.de

Bernd Brügge
Technical University Munich

Munich, Germany
bruegge@in.tum.de

ABSTRACT
Many farmers and families in poor rural areas in the develop-
ing world keep pigs as a resource for income. Most of these
pigs are not kept in stables but let to roam freely. While this en-
ables poor farmers to keep livestock without vast investments
and sets pigs free from stables, it also increases the transmis-
sion rate of infectious diseases among pigs and to humans.
Currently, there is a lack of knowledge on free-roaming pigs’
behavior. In particular, veterinarians are interested in correla-
tions between pig behaviors and the presence of an infectious
disease. In this paper, we present the iPig system, a wearable
motion sensor to track the physical activity of pigs and a user
interface to enable veterinarians to keep track of the activities
of the pigs in a herd. The motion sensor inserted inside a pig’s
ear classifies its physical activities into ’walking’, ’eating’ and
’resting’. A daily report about pig activities is displayed to vet-
erinarians over a user interface on a tablet device. Results of a
first pilot study suggest that iPig could classify pig physical
activities with an accuracy of up to 95.8%. We also discuss the
rationale behind the wearable for pigs we designed following
an animal-centered design methodology.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation: Miscella-
neous

Author Keywords
iPig, wearable. activity recognition, animal, pig

INTRODUCTION
The increasing demand for meat has made pork grow in popu-
larity, mainly because pigs have low associated costs to acquire
and raise [11]. In particular, pigs grow faster and have more
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACI2017, November 21–23, 2017, Milton Keynes, United Kingdom

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5364-9/17/11. . . $15.00

DOI: https://doi.org/10.1145/3152130.3152145

offspring than sheep and cattle, eat leftover food, and are easy
to sell [6]. As a consequence, several farmers and families
in developing countries such as Zambia, Kenya, Uganda and
Tanzania have started keeping pigs as a resource for savings
and income [6].

One of the reasons why pigs are a cost-effective option for
farmers is their natural ability to scavenge for food. In some
countries in the developing world, pigs are not kept in stables
but are allowed to roam freely. This has enabled poor farmers
to maintain livestock without vast investments (e.g. infrastruc-
ture, foodstuff). Despite its economical benefits, allowing pigs
to roam freely increases the rate of transmissions of infectious
diseases among pigs and to humans [11].

One infectious disease of particular relevance in the case of
free-roaming pigs is Cysticercosis. Cysticercosis is a major
cause of epilepsy in the developing world. The disease is
caused by a parasite called Taenia Solium. The parasite is
transferred in a cyclic fashion from pigs to humans through
undercooked or raw meat and from humans to pigs through
human feces. In rural areas where there is low provision of
latrines, people often defecate openly, offering a possibility
for pigs to ingest human feces with infective parasite eggs.
Cysticercosis is suspected to cause epileptic strokes and death
to pigs, as it does to humans.

As a measure against the propagation of infectious diseases
in poor African countries, this research aims at gaining un-
derstanding into the daily behavior of free-roaming pigs. A
previous study used GPS technology to track the movements
of free-roaming pigs in western Kenya to gain knowledge
about areas visited, distances traveled and amounts of time
pigs spent outside their ’home range’ [11]. This study found
that pigs travel an average distance of more than 4 km in a
12-hour period and spend an average 47% of their time outside
their homestead of origin. In addition to tracking the posi-
tions visited by pigs daily, the physical activities of pigs could
provide relevant information to understand where and how
pigs might get infected and even predict the presence of an
infection.

In this paper, we report on the iPig system, an on-going effort
to gain knowledge about free-roaming pig behavior. In par-
ticular, we have developed a wearable device able to classify
free-roaming pig physical activity and a user interface that
provides aggregated statistical information about pig’s daily
behavior to veterinarians. The contribution of this paper is
threefold. First, we describe the requirements we elicited for
a wearable device for free-roaming pigs. Second, we address
the design trade-offs we faced during its development. The
requirements we elicited and design decisions we made might
prove useful in the development of wearable devices for pigs
or other animals. Third, we present the first insights of a study
we conducted in order to determine the performance of differ-
ent supervised machine learning algorithms at classifying pig
physical activity.

REQUIREMENTS
In order to elicit the requirements for designing a wearable
device to keep track of free-roaming pigs, we conducted a
series of interviews with two veterinarians that work with pigs
in a daily basis. The first veterinarian performs research in
the field of infectious diseases caused by free-roaming pigs
in poor regions in Africa. The second one has over ten years
experience treating and working with pigs in a stable near
Munich, Germany. Based on the interviews, we identified the
following requirements:

RQ1 - Safety and welfare. Free-roaming pigs have been
reported to walk distances of more than 4 km daily [11].
The design of a wearable device should not limit the pig’s
ability to walk and scavenge for food or increase its energy
expenditure. Furthermore, pigs have a sensitive skin and
less hair than most mammals. The wearable device or strap
bands should be designed not to cause any injury to pigs’
skin.

RQ2 - Robustness. Pigs roll on mud and dirt and are exposed
to rain. Furthermore, pigs tend to bite themselves and might
try to remove the device as long as they can reach to it with
their mouth. Therefore, the wearable device should be water
proof, resistant to bites and ideally, be placed at parts of the
pig’s body where the pig cannot reach it with its mouth.

RQ3 - Low Cost. Free-roaming pigs as well as wearable
devices are prone to getting stolen in countries under devel-
opment. In order to reduce the chances that the device gets
stolen and the losses in case it does, the wearable device
should have a low cost.

RQ4 - Energy efficiency. Neither farmers or veterinarians
might be willing to invest time in removing the wearable
devices from every pig in a herd in order to replace or
recharge the battery regularly. Therefore, it is critical that
the wearable device functions as long as possible without
human intervention.

RQ5 - Adaptability. Rapid growth of an animal might cause
a strapped wearable device not to fit anymore, cause dis-
comfort and even endanger the animal (e.g. by strangling it
when strapped around its neck [3]). Pigs grow on average
from 12 kg to 30 kg between their second and fifth month

Figure 1. Different designs for a wearable device to be used by pigs.

of life [6]. The wearable device should be designed to fit
and adapt to the different sizes of a pig.

ANIMAL-CENTERED DESIGN
We designed the wearable device to based on the requirements
listed in the previous section and the ethical principles pro-
posed by Mancini [10] with the goal to maximize the welfare
of the pigs using the device. We designed the wearable device
iteratively by conducting field studies to test our prototypes
on different pigs in a stable located in the outskirts of Munich,
Germany.

We considered three possible designs for the wearable device:
A) an ear-tag, B) a harness fastened around the pig’s torso and
C) a strap band for the leg. These alternatives are illustrated
in Figure 1. We discarded limbs as an alternative to attach a
device quickly during the first test, as we observed clear signs
of discomfort and lack of acceptance from pigs, which tried to
remove the device by biting it. We concluded that pigs would
not consent to attach the device to any of their limbs, hence
this design would violate the second ethical principle proposed
by Mancini: Garnering participants’ mediated and contingent
consent [10]. More importantly, veterinarian suggested that
attaching a device to any limb of a pig could cause discomfort
and injury to the pig and be easily removed by it.

Alternative B) consisted of a leather harness strapped around
the pig’s torso. This design had the advantage that it allowed
for a bigger device size, hence a larger battery could be placed
on it that could last for months. However, during a field test,
we observed two major limitations to this design. First, it
caused injuries to the pig’s skin due to rubbing between the
strap band and the pig’s skin while walking with the harness
attached for a week. Second, the harness would have to be
adapted or replaced after a few weeks due to pigs’ growth
(RQ5). Attaching a wearable device that causes discomfort
and injury to an animal would not be acceptable from an
animal-centered ethical point of view. Therefore, we decided
against this design.

We decided to place the wearable device inside a pig’s ear. The
device is powered with a knob containing a coin-cell battery
that is attached from the outer side of the ear. This design has
three main advantages. First, the ear of a pig does not grow in
size as much as other parts of its body. As a consequence, a
device might remain inserted in a pig’s ear for longer periods

Figure 2. iPig’s architecture.

of time (RQ5). Second, the ear cannot be reached by the
pig’s mouth and is relatively protected from mud and dirt, thus
reducing potential damage inflicted upon the device (RQ2).
Additionally, the fact that ear tags for pig identification are in
use in some commercial farms suggest that the ear has been
found to be a convenient place for attachment of electronics
by the veterinary medicine community. This also means the
practice of punching a wearable device through the ear has
been approved by the ethical committees regulating the animal
practices in those farms. Attaching a wearable device that
causes pain to an animal raises the ethical question as to what
extent do its benefits justify the pain and harm involved during
the attachment. We argue that our research might improve
the life quality of pigs and humans equally by preventing
potentially more harmful diseases. An image of a 3D printed
casing of the wearable device is shown in Figure 4 (NanoHub).

IPIG
iPig consists of two main components: a wearable device
worn by pigs and a user interface on a tablet. The wearable
device classifies pig activities based on motion data and sends
a daily activity report to the tablet device. The tablet device
aggregates the daily activity reports received from different
wearable devices and displays statistical information about pig
activities and areas where the activities took place. The user
interface is shown in Figure 3 and the iPig’s architecture is
illustrated in Figure 2. In this section, we describe in detail
the design of the wearable device and user interface.

Wearable Device
In order to address the strict constrains in terms of size and
weight posed by the placement of the device inside a pig’s
ears, we decided to design a custom motion sensor. We call
our wearable device NanoHub. The NanoHub and contains a
6-axis Inertial Measurement Unit (IMU), an ARM Cortex M0
microcontroller and a Bluetooth Low Energy (BLE) module.
In addition, we designed a larger device called MicroHub.
The MicroHub contains an SD card reader and additional
electronics to facilitate the software development and testing.
We used this device to collect raw motion data from pigs
in order to develop our machine learning algorithm. Both
devices were designed by Figure 4 shows a comparison of the
MicroHub and NanoHub. Both devices were developed by a
company in Munich called InteractiveWear1.
1http://www.interactive-wear.de/

Activity Recognition
One key aspect of the iPig system is knowing what physical
activity pigs are doing. Activity recognition based on IMU
data has been intensively studied in humans [2, 9]. A few
studies have been done on quadrupeds. Cornou et al. have
proposed a method based on multi-process Kalman filter to
classify pig activities based on acceleration patterns [4]. Ladha
et al. [8] developed a wearable device able to detect physical
activities linked to the wellbeing of dogs. In cows, several
studies investigated physical activity recognition in order to
detect lameness [1, 7]. Most of these approaches have used
supervised machine learning to classify physical activities.

In another study, Cornou et al. [5] used sensor networks and
motion sensors strapped to pig’s neck for detecting oestrus
based on pigs’ acceleration. Furthermore, Thompson et al [12]
used IMUs for classifying animals posture (standing, sitting,
lateral and sternal lying). None of these studies have focused
on pigs roaming in the wild.

Our approach for classifying pig activities consists of three
steps:

1. Preprocessing. We divide IMU data (linear acceleration and
rotation) in windows of 50 samples. We low-pass filter every
window using a second order Butterworth low-pass filter at
20 Hz. After applying the filter, we compute the magnitude
of each linear acceleration vector. This produces a data set
with 7 data points for each time step: linear acceleration
and rotation along three axes x,y,z and the magnitude of the
linear acceleration. This gives us a matrix of 7x50 values
for each window.

2. Feature Extraction. For each 7x50 values-window, we com-
pute 5 features: mean, median, standard deviation, Zero
Crossing Rate (ZCR) and Peak-to-Peak amplitude (P2P).
We selected this set of features based on the fact that they
can be implemented on a wearable device at a low compu-
tational cost. The feature extraction results in a vector of 35
features which we call "feature vector".

3. Classification. We classify the feature vector using a trained
machine learning model into one of the following classes:
"walking", "eating" or "resting". In the next section, we
discuss the classification performance of different machine
learning models we studied.

PILOT STUDY
We conducted a study to gain insight into the accuracy of
different supervised machine learning models at classifying
physical pig activity. This pilot study was realized in a stable
in the outskirts of Munich, Germany with the consent of the
veterinarian who are legally responsible for the pigs to ensure
that to harm was done to the pig during the study.

Setup
We selected a pig randomly from a stable with an outdoor
space. The outdoor space contained wild vegetation that en-
abled pigs to wander and scavenge for food. We attached the
sensor to an ear tag worn by the pig and let the pig walk around
freely. When the pig stopped walking for too long, we walked

Figure 3. iPig’s user interface implemented on an iPad device. On the left side of the interface, a list of pigs is shown, together with it’s location and
health condition. This enables veterinarians to have an overview of the pigs’ health condition and location. One or more pigs can be selected from the
list. The right side of the interface displays information about the pig or pigs selected on the left side. The physical activities the selected group of pigs
performed in a selectable time range are displayed overlaid on a map of the region at the locations where the activities took place. The activity color
mapping goes as follows: walking - red; resting - green; eating - blue. In addition, statistical information about the behavior of the currently selected
pigs is shown as a table and timeline.

Figure 4. MicroHub (left) and prototype of the NanoHub (middle). Both
devices contain a microcontroller, a 6-axis IMU, a BLE module and a
battery. However, the MicroHub contains an additional SD card reader
needed for development purposes.

behind it to ensure it continued walking and scavenging for
food. Figure 5 shows a member of the team walking behind a
pig.

We recorded motion data at 100 Hz and videotaped the entire
experiment. We then labeled the motion data into periods as:
’walking’, ’eating’, ’resting’ based on the video. We recorded
a total of 282s (walking), 8.5s (eating) and 29s (resting). This
gave us the following amounts of feature vectors to classify:
1130 (walking), 35 (eating), 118 (resting).

Results
We evaluated the performance of different supervised machine
learning models, including Support Vector Machines (SVM),

Figure 5. Image taken during the pilot study with a pig.

k-Nearest Neighbors (kNN) and linear discriminant. We tried
two types of SVM kernels: a cubic and a quadratic kernel and
studied the performance of the kNN model with k=1 and k=10
neighbors. Table 1 shows the accuracy, precision and recall of
the different machine learning models we studied. The results
were validated using the 10-fold cross validation technique.
We selected these algorithms based on their public availability.

Discussion
These results suggest that the wearable device we designed
would classify pig activities into walking, eating or resting
with an accuracy of 95.8% and a relatively low misprediction
rate (precision: 75,4% and recall: 86,6%).

While these results provide first insights into how accurately
pig physical activities could be classified using a motion sensor

Table 1. Performance of different supervised machine learning models
at classifying pig physical activity.

Model Accuracy Precision Recall
SVM
(cubic Kernel) 95,87% 75,42% 86,63%

SVM
(quadratic Kernel) 95,79% 71,87% 88,46%

KNN (k=1) 94,54% 80,04% 81,16%
KNN (k=10) 95,17% 65,26% 88,16%
Linear Discriminant 94,34% 76,71% 77,14%

attached inside the pig’s ear, our experiment has two main lim-
itations. First, the data used to train the model and to validate
the model was acquired with the same pig. This could have
biased the model to perform well on the pig that participated
on the experiment but might perform less accurately when
tested with motion data from other pigs. Second, we acquired
considerably more data for the "walking" activity. This would
cause our model to achieve a high accuracy by favoring the
"walking" prediction.

In the future, a larger data set should be acquired for longer
periods of time and for several pigs (ideally of different races
and sizes). This would produce a larger dataset that could be
used to obtain a more generalisable machine learning model.
Furthermore, the pigs in the experiment should be let free to
perform their natural activities with no human influence in
order not to bias their behavior.

CONCLUSION
We have presented an on-going work to enable veterinarians
to keep track of free-roaming pigs. In particular, we presented
a wearable device able to classify pig physical activities. The
results of our pilot study suggest our approach is viable and
would even enable the tracking of pig activities with an accu-
racy of 95.8%. However, a longer-term in-field deployment of
the iPig system is necessary to determine the performance of
our approach under a more unconstrained setting and would
serve for identification of issues with respect to the require-
ments we elicited.

We assessed different designs for the wearable device and
decided for a design meant to be inserted inside a pig’s ear.
The fact that pigs in many commercial farms already use
ear tags opens up a possibility for our wearable device to be
integrated in the ear at almost no added cost. Keeping track
of pigs’ physical activities could be useful to monitor and
better address the needs of pigs in stables as well (e.g. predict
disease and pregnancy).

ACKNOWLEDGMENTS
We would like to thank Veronika Schmidt and Dr. Lian
Thomas for their supervision and guidance during this project
and Dr. Stefan Nüske and the staff of the Ludwig Maximilian
University Munich for their support during the pilot study.

REFERENCES
1. Maher Alsaaod, Christoph Römer, Jens Kleinmanns,

Kathrin Hendriksen, Sandra Rose-Meierhöfer, Lutz

Plümer, and Wolfgang Büscher. 2012. Electronic
detection of lameness in dairy cows through measuring
pedometric activity and lying behavior. Applied Animal
Behaviour Science 142, 3 (2012), 134–141.

2. Akin Avci, Stephan Bosch, Mihai Marin-Perianu, Raluca
Marin-Perianu, and Paul Havinga. 2010. Activity
recognition using inertial sensing for healthcare,
wellbeing and sports applications: A survey. In
Architecture of computing systems (ARCS), 2010 23rd
international conference on. VDE, 1–10.

3. Ruth M Casper. 2009. Guidelines for the instrumentation
of wild birds and mammals. Animal behaviour 78, 6
(2009), 1477–1483.

4. Cécile Cornou and Søren Lundbye-Christensen. 2008.
Classifying sows’ activity types from acceleration
patterns: an application of the multi-process kalman filter.
Applied Animal Behaviour Science 111, 3 (2008),
262–273.

5. Cécile Cornou, Jens Vinther, and Anders Ringgaard
Kristensen. 2008. Automatic detection of oestrus and
health disorders using data from electronic sow feeders.
Livestock Science 118, 3 (2008), 262–271.

6. Cate E Dewey, Jared M Wohlgemut, Mike Levy, and
Florence K Mutua. 2011. The impact of political crisis on
smallholder pig farmers in western Kenya, 2006–2008.
The Journal of Modern African Studies 49, 3 (2011),
455–473.

7. Juan Haladjian, Bernd Brügge, and Stefan Nüske. 2017.
An approach for early lameness detection in dairy cattle.
In Proceedings of the 2017 ACM International
Symposium on Wearable Computers. ACM, 53–56.

8. Cassim Ladha, Nils Hammerla, Emma Hughes, Patrick
Olivier, and Thomas Ploetz. 2013. Dog’s life: wearable
activity recognition for dogs. In Proceedings of the 2013
ACM international joint conference on Pervasive and
ubiquitous computing. ACM, 415–418.

9. Oscar D Lara and Miguel A Labrador. 2013. A survey on
human activity recognition using wearable sensors. IEEE
Communications Surveys and Tutorials 15, 3 (2013),
1192–1209.

10. Clara Mancini. 2017. Towards an animal-centred ethics
for Animal–Computer Interaction. International Journal
of Human-Computer Studies 98 (2017), 221–233.

11. Lian F Thomas, William A de Glanville, Elizabeth A
Cook, and Eric M Fèvre. 2013. The spatial ecology of
free-ranging domestic pigs (Sus scrofa) in western Kenya.
BMC veterinary research 9, 1 (2013), 46.

12. Robin Thompson, Stephanie M Matheson, Thomas Plötz,
Sandra A Edwards, and Ilias Kyriazakis. 2016. Porcine
lie detectors: Automatic quantification of posture state
and transitions in sows using inertial sensors. Computers
and electronics in agriculture 127 (2016), 521–530.

6.9. GAIT ANOMALY DETECTION IN DAIRY CATTLE

6.9 Gait Anomaly Detection in Dairy Cattle

This publication describes an activity recognition algorithm to detect deviations in
the usual gait of dairy cattle. The algorithm builds a model of the usual gait of a
cow by segmenting its gait strides and using them to train an unsupervised machine
learning algorithm. After the first hours of usage, our algorithm is able to detect
deviations from the trained model. The paper describes our algorithm and discusses
how we evaluated it.

The author of this Habilitation collected the data in a stable in Munich, studied
the performance of different recognition methods and wrote the paper.

Authors Haladjian, J., Hodaie, Z., Nueske, S., & Bruegge, B.
Conference Fourth International Conference on Animal-Computer

Interaction
Number of Pages 8
Type Full Paper
Review Peer Reviewed (3 Reviewers)
Year 2017
DOI https://doi.org/10.1145/3152130.3152135

131

Gait Anomaly Detection in Dairy Cattle
Juan Haladjian

Technical University Munich
Munich, Germany

haladjia@in.tum.de

Zardosht Hodaie
Technical University Munich

Munich, Germany
hodaie@in.tum.de

Stefan Nüske
Ludwig Maximilian University

Munich, Germany
stefan.nueske@lmu.de

Bernd Brügge
Technical University Munich

Munich, Germany
bruegge@in.tum.de

ABSTRACT
Cow lameness is a common welfare issue in the dairy indus-
try that causes severe health and life quality issues to cows,
including pain and a reduction in their life expectancy. The
earlier a lame cow is detected, the earlier and more effectively
it can be treated. A change in the gait of the cow is the earliest
symptom of lameness. Currently, lame cows are detected by
visual inspection performed by herdsmen, which is subjective
and time consuming. We present an approach to automatically
detect anomalies in the walking pattern of a cow as a possible
indicator of lameness. The detection is done by a wearable
motion sensor attached to a cow’s hind left leg. Our approach
builds an individual model of the usual walking pattern of a
cow during the first minutes of use and detects deviations from
this model afterwards. Results from a controlled experiment
we conducted indicate that our approach can detect deviations
in cows’ gait with an accuracy of 91.1%. This information can
be used by veterinarians to keep track of changes in the walk-
ing pattern of cows and to decide whether to treat a specific
cow.

ACM Classification Keywords
H.5.2 Information interfaces and presentation: Miscellaneous

Author Keywords
lameness, cow, wearable, animal, anomaly detection, gait
analysis

INTRODUCTION
Lameness is a manifestation of painful disorders that result
in an impaired movement or deviation from normal gait or
posture [18]. In dairy cattle, the main causes of lameness
are lesions in the claws which cause bacterial infections and
swelling in cows’ hooves and legs. Lameness causes severe

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACI’17, November 21–23, 2017, Milton Keynes, United Kingdom

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5364-9/17/11. . . $15.00

DOI: https://doi.org/10.1145/3152130.3152135

pain and is associated with health issues such as the loss of
fertility. Furthermore, lameness causes serious welfare and
economic problems in the dairy industry. Some of the costs
associated with lameness are the need for veterinary treatment
and a reduction in milk production and cow’s reproductive
performance. At advanced stages of the disease, a lame cow
might die or have to be sacrificed by humans. Lameness is a
common issue in dairy cows, with some stables having up to
72% lame cows. [18].

The earlier a lame cow is identified, the earlier the causes of
the disorder can be treated. Currently, lame cows are identified
by visual inspection of their walking pattern, which is done
by herdsmen. However, automation and the rapid growth in
livestock production have led to more cattle and less employ-
ees per herd. As a consequence, herdsmen have less time to
monitor the health condition of their cows.

Automated systems for cow milking, feeding and cleaning
are already being used in commercial herds. Neckbands with
integrated motion sensors are being used in commercial herds
to predict whether a cow is undergoing oestrus (i.e. the period
of sexual fertility in a female mammal). These neckbands are
used by veterinarians to determine the proper time to insemi-
nate a cow. In contrast, systems to detect lameness are rarely
used in commercial herds, despite the variety of solutions
proposed by the scientific community.

Approaches for automated lameness detection include those
based on computer vision and pressure sensing. These ap-
proaches require expensive equipment and are limited to mea-
suring a few steps per cow, which might not be enough to
accurately detect lameness. Motion sensors have also been
studied to detect lameness. Most of these approaches keep
track of a cow’s physical activity (lying down, standing and
walking) [11, 10]. However, changes in physical activity due
to lameness occur at more advanced stages of the disorder.
The first observable symptom of lameness is a change in a
cow’s usual walking pattern (i.e. gait).

We present an approach to detect deviations in cows’ usual
walking pattern using a wearable motion sensor. Assuming
the cow is healthy and walks normally at the time the sensor is
attached to it, our approach creates a model of the usual walk-

Figure 1. Motion sensor attached to a cow’s hind left leg.

ing pattern for each individual cow during the first minutes
of use and detects deviations from that pattern later on. The
cows that have been detected as having a deviation in their
usual walking pattern can be investigated by veterinarians later
on. Our approach requires a single motion sensor attached to
cows’ hind left leg. The motion sensor is shown in Figure 1.

The rest of the paper is structured as follows. The Related
Work Section provides a comprehensive overview of other
automated lameness detection systems and highlights how
our approach relates to them. In the Approach Section, we
describe the hardware we designed, the signal acquired by our
device while a cow is in motion and how our algorithm works.
In particular, we present a wearable motion sensor and a set
of algorithmic steps to train the model and classify cow steps
into normal or abnormal. The Controlled Experiment Section
presents the results of a controlled experiment we conducted
in order to validate our approach.

RELATED WORK
Most modern stables collect data from cows’ daily activity
such as the amount of milk cows yield and how much food
they are fed. Different studies have suggested using this data
to predict lameness [7, 5]. However, changes in milk yield
and feeding behavior due to lameness might manifest days
after changes in gait. Detecting a lame cow based on its gait
would make it possible to stop further development of the
disorder. This would allow veterinarians to treat the cause
of the disorder earlier, relieving it from pain and restoring its
normal function.

Approaches for lameness detection based on gait analysis
include those based on computer vision, weight sensing and
motion sensing. Computer vision approaches extract lameness-
related parameters from video, such as the arching of a cow’s
back [15], the amount of overlapping between a cow’s consec-
utive steps [16] and the angle at which a cow’s fetlock joint
makes contact with the ground during a step [14].

Weight sensing approaches measure the weight a cow places
on each limb while standing on force plates [12] or walking

over a force-sensitive mattress [8]. Based on this data, informa-
tion about cows’ walking and standing behavior is calculated,
such as the length and duration of a stride [8], the amount
of kicks a cow performs while standing [12] and the weight
distribution under single hooves [6].

Computer vision and weight sensing approaches require ex-
pensive devices and are limited to measuring a few steps per
cow. These approaches face additional challenges such as
the fact that cows near the measuring area might disrupt the
measurements [18] and the need for additional technologies
to identify the cow being measured.

Motion-based lameness detection approaches rely on motion
sensors that are attached to cows’ legs and/or neck. Most
motion-based lameness detection approaches measure parame-
ters related to cows’ daily physical activity, such as the amount
of time cows spend lying, standing and walking [17, 2], the
number of steps cows perform per day [10] and the time of the
days when cows start and stop walking [19]. These approaches
do not analyze gait per se, but predict lameness based on cows’
daily activity.

Two studies have investigated cow gait for lameness detection
based on motion data. Pastell et al. [13] applied wavelet
analysis to accelerometer data and found that there is less
symmetry in the acceleration of hind legs in lame cows than
in healthy cows. Chapinal et al. [3] found that the variance
of acceleration of front and hind legs could be used to predict
gait scores. These studies compared lame cows with non-lame
cows in order to discover differences in their gait.

The approaches mentioned so far are based on the models that
do not consider the differences in the physical behavior and
tolerance to pain of each individual cow. However, Alsaaod et
al. [2] found that the variation of physical activity among cows
is significantly larger than the variation of physical activity
caused by lameness. This suggests that lameness should be
regarded as a per-cow basis rather than comparing a cow’s
motion to a baseline established from other cows.

Our approach compares the gait of a cow to a baseline estab-
lished by the cow itself during the first minutes of use. The
approach is based in anomaly detection, a technique com-
monly used to detect bank fraud and intrusion in computer
networks. We chose to detect anomalies in gait because of two
main reasons. First, a deviation from the normal gait is the
first indicator of a possible lameness. Second, this approach
takes into consideration the uniqueness of each cow’s gait [2].

APPROACH
In this section, we describe our approach for anomaly detec-
tion in a cow’s gait, including the sensor device that senses
motion data and the anomaly detection approach. Our anomaly
detection approach consists of two phases: the training phase
and the detection phase. The training phase builds a model of
the usual gait of a single cow. The detection phase classifies
the gait of a cow into normal or abnormal based on a com-
parison of its current gait with a model created based on the
gait of that particular cow during the first minutes of use of
our wearable device. The training phase is done in four steps:

Figure 2. The front (left) and back (right) side of the sensor device.

data preprocessing, step segmentation, feature extraction and
model training.

Sensor Device
We designed a sensor device containing an ARM Cortex-M0
microcontroller, a 6-axis Inertial Measurement Unit (IMU)
and a Bluetooth Low Energy (BLE) module. We aimed for a
low cost, low energy consumption and small footprint design.
The ARM Cortex-M0 microcontroller operates at 16 MHz
and is characterized by its low-power consumption rate and
small footprint. The MPU-6050 from Invensense measures
acceleration and rotation and performs sensor fusion directly
on the chip. This allows for an energy-efficient and accurate
computation of the device’s orientation. The orientation of
the hoof is relevant for lameness detection because lame cows
often step at a particular angle in order to avoid pain [14].
As a communication module, we decided on BLE due to it’s
low-power consumption feature. We designed the circuit as
a two-layer board placing the motion sensor on the front side
and the microcontroller and BLE module on the back side.
The dimensions of the circuit board are 21 x 21 x 2.5 mm.
Figure 2 shows the front and back sides of the circuit board.
The device functions at 3.3 v and is powered by a 400 mAh
battery.

Preprocessing
The sensor device measures linear acceleration and rotation
at 100 Hz along 3 axes (x,y,z). The device is oriented such
that the y-axis represents vertical accelerations, the x-axis is
parallel to the cow (i.e. in its walking direction) and the z-axis
is lateral (i.e. left and right) to a cow. Figure 3 illustrates the
correlation between walking strides and accelerometer signals
along x- and y-axes.

The preprocessing step divides the incoming acceleration and
rotation signals into chunks (windows) - units that are further
processed and classified as ’normal’ or ’abnormal’ in the fol-
lowing steps. The choice of the window size has an impact
on the accuracy of the anomaly detection as well as on the
hardware requirements. The larger the size of a window, the
more information that can potentially be extracted from it.
However, the need to process larger windows of data leads
to larger memory footprints, more computations and higher
energy consumption rates.

We chose a chunk size of 3000 samples (30 seconds) by fol-
lowing a greedy heuristic approach using the average accuracy
of our anomaly detection approach as metric for optimization.
This parameter can be decreased to lower the requirements to

Figure 3. Linear acceleration along x- and y-axes during four strides.
Forward movements during a stride cause a positive acceleration along
the x-axis. Impacts with the ground can be seen as peaks in the accel-
eration along the y-axis. Furthermore, the periods while the hoof is in
contact with the ground (still phases) have almost zero acceleration.

the hardware device or increased for higher accuracy of the
anomaly detection.

In order to remove noise caused by the accelerometer, we
apply a second order Butterworth low-pass filter at 20 Hz
to each window. Low-pass filters eliminate high frequencies
in a signal making it smoother. After applying the filter, we
compute the magnitude of each linear acceleration vector. This
produces a total of 7 data sets: linear acceleration and rotation
along three axes and magnitude of linear acceleration.

Step Segmentation
The purpose of the step segmentation is to detect the beginning
and ending of a step. We segment the steps based on the
peaks produced during the stride. We chose to do the step
segmentation based on the linear acceleration along the y-axis
because the highest peaks in the signal during a cow’s stride
are caused by the impact of its hoof with the ground. The step
segmentation is done in the following three steps:

1. Every step has two upper peaks. We detect the highest peak
with a peak detection algorithm. We ignore peaks that are
less than 60 samples away from a previously detected peak.
This also filters out periods when cows did not walk.

2. Every step is preceded by periods of small variance in accel-
eration. We find these periods by searching for the 9-sample
window with smallest variance in acceleration among the
70 samples before and after the detected peak. We call the
center of these windows initial step segments.

3. Between two initial step segments, additional samples are
included that might not belong to a step. Therefore, we trim

Figure 4. Initial and trimmed segments detected with our step segmen-
tation algorithm applied to linear acceleration along the y-axis.

the step by shifting the initial step segments towards the
peak detected in step 1. The initial step segments are shifted
until the standard deviation of a 6-sample window centered
at the shifted step segment is larger than 0.2.

Figure 4 shows the linear acceleration along the y-axis of
four consecutive steps with annotations pointing at initial and
trimmed step segments.

Feature Extraction
For each step segmented, we compute a set of gait and statis-
tical features. Gait features are measurements specific of a
step. Every step is characterized by three peaks: two upper
peaks and one lower peak. We first detect all three peaks. If
any of the peaks could not be found, we ignore the step. This
might happen if the cow shortly lifted a leg or got bumped by
another cow. For all three peaks, we compute its rise value
and time. The rise times are computed as the difference in
samples to the previous peak. The rise time of the first peak
is computed as the difference in samples to the first sample in
the trimmed step segment. In addition, the total duration of
the step is added to the feature set. Figure 5 illustrates how
the gait features are computed based on the three peaks of a
single step.

Statistical features are measures to extract information from
data sets. We extract the following statistical features: mean,
median, standard deviation, Zero Crossing Rate (ZCR), Peak-
to-Peak amplitude (P2P), Root Mean Square (RMS) and Av-
erage Acceleration Variation (AAV) for every step. ZCR is a
measure of the amount of times a signal crosses the zero value.
A high ZCR might indicate a highly intense or periodic activ-
ity. P2P is the difference between the maximum and minimum
acceleration value in a step and provides information about

Figure 5. Gait features: peak rise values, peak rise times and step dura-
tion. These seven features are computed for all three accelerometer axes.
This figure illustrates the computation of these features on the linear ac-
celeration along the y-axis.

the intensity of a step. RMS is the square root of the mean
of the values in a step squared. This measurement provides
information about the amount of acceleration and variation in
a step. AAV is calculated as the sum of the absolute differ-
ences between consecutive samples in a step normalized by
the number of samples. AAV provides an indication of how
sudden changes in acceleration happen within a step. These
measurements are commonly used for activity recognition ap-
plications and have been recently used for fall-detection and
gait analysis in humans [4, 1].

The list of gait and statistical features are enumerated in table
1. Gait features are computed on linear acceleration and sta-
tistical features are computed on linear acceleration, rotation
and magnitude of acceleration. ZCR is only computed on the
linear acceleration. This gives us a total of 21 gait features
and 45 statistical features per step. A window might contain
several steps. We average the features extracted from the same
window. A vector containing the 66 averaged features is called
gait observation.

Model Training
Our anomaly detection approach is based on a one-class Sup-
port Vector Machine (SVM) classifier. Binary SVM classifiers
calculate a boundary that maximizes the distance between
observations (i.e. samples) of two different classes. Our one-
class SVM classifier finds a boundary around observations
of the normal class and classifies new observations based on
their distance to this boundary. The classifier is trained auto-
matically based on the gait of a cow acquired during the first
minutes of use.

Table 1. Gait and statistical features used by our approach. Features
labeled as accel are computed on all three axes of the linear acceleration
and features labeled as all are computed on every axis of the linear accel-
eration, rotation and on the magnitude vector of the linear acceleration.

Feature Signal #

Gait
features

rise values accel 9
rise times accel 9
step duration accel 3

Statistical
features

mean all 7
median all 7
STD all 7
ZCR accel 3
P2P all 7
RMS all 7
AAV all 7

Total 66

The boundary of our classifier is defined such that a fraction
outlier fraction of the observations in the training set is classi-
fied as abnormal. The outlier fraction is used to define how
’compact’ the boundary around normal gait observations is.
The smaller the outlier fraction, the higher the specificity of
the model (i.e. the less false alarms the model produces). On
the other hand, a small outlier fraction reduces the sensitiv-
ity of the model (i.e. more prone to missing abnormal gait
observations).

Anomaly Detection
New gait observations are classified as normal or abnormal
according to their distance to the boundary of the normal ob-
servation set. Gait observations are classified as abnormal
if and only if their distance to the boundary of normal gait
observations is smaller than the abnormality threshold. The
performance of the classifier is determined by the outlier frac-
tion and abnormality threshold parameters.

CONTROLLED EXPERIMENT
This section describes a controlled experiment we designed
following an animal-centered research methodology and ap-
plying ACI ethical guidelines.

Animal-centered Design
Previous work in automatic lameness recognition studied the
gait of lame cows by forcing cows with different degrees of
lameness to walk while their motion was being recorded. How-
ever, forcing an animal in pain to walk would be unacceptable
for an animal-centered research approach and would violate
several ethical principles accepted in ACI [9].

We have developed an approach to detect deviations from usual
gait in cows. One way to evaluate our approach would be to
attach our sensor device to several cows and wait until their
gait changes (e.g. due to lameness or pregnancy). However,
this could take several months, which makes this approach
impractical for research purposes.

Another alternative we considered was to let cows walk under
normal conditions and have experts determine whether any of
the steps or sequences of steps were different from its usual
gait. However, this study would require correlating every step

of a cow in a video recording to the motion signal and would
be prone to the subjective definition of ’abnormal’ step.

Instead, our evaluation method is inspired by other research on
anomaly detection, in which the detection of seldom occurring
events were evaluated by simulating those events [4, 1]. For
example, Cola et al. [4] evaluated their approach to detect
anomalies in human gait by letting subjects walk with strap
bands around their knee.

In order to cause a change in the walking pattern of cows, we
decided to attach a plastic block to one of their hind hooves.
Veterinarians usually attach such plastic blocks to cow hooves
in order to relieve pain and allow an injured claw to heal.
Attaching a plastic block to a hind hoof causes a similar change
in walking pattern as lameness: in both cases, cows shift
their weight towards the opposite hind limb. We attached
blocks to the hind hooves because hind limbs are the ones
most commonly affected by lameness. Figure 6 shows a plastic
block attached to the outer claw of a left hind hoof.

Our procedure consisted of the following steps:

1. We let cows walk normally during a period of less than 10
minutes. We repeated this procedure on three different days
in order to reduce fatigue and stress caused to the animal
subject.

2. We attached a plastic block to one hind-hoove and let the
cow walk with it.

3. We attached a plastic block to the opposite hoove and let
the animal walk with it.

We consider this approach to be the most appropriate for an
animal-centered research among the other approaches we con-
sidered because it does not involve pain and requires a con-
siderable shorter intervention to cows’ daily activity. The
intervention to cows’ daily activities lasted approximately 40
minutes: 10 minutes for the attachment of the sensor and
recording of normal walking (this was repeated on three differ-
ent occasions) and 30 minutes for the attachment of the plastic
blocks.

Ethical Considerations
Our research required cows to take part in an experiment. In
order to ensure an ethically appropriate involvement of the
cows in our experiment, we designed our experiment based on
the ethical guidelines proposed by Mancini [9]. We addressed
these principles as follows:

1. Respecting and caring for every participant without dis-
crimination. The participants of this experiment were cows
of different ages and breeds. We did not harm any of the
them or make any discrimination as for the selection of par-
ticipants or treatment they received during the experiment.

2. Garnering participants mediated and contingent consent.
We conducted this experiment together with two profes-
sional veterinaries who are the legal representatives of the
cows that participated in the experiment. Both veterinaries
know the needs and welfare requirements of these cows and

Figure 6. Plastic block attached to the outer claw of a cow’s left hind
hoof.

gave us their consent to conduct the experiment. Further-
more, they accompanied us and supported us throughout the
entire experiment to ensure these requirements were met.

3. Doing research that is relevant to participants and consis-
tent with their welfare. The results of our research suggest it
is possible to automatically detect a condition that is painful
for cows and highly detrimental to their health (e.g. might
lead to death if not treated early enough). Our research has
the potential to benefit the individual cows that participated
in the experiment, as well as other cows. This research was
conducted in the natural environment of the participating
cows, an indoor stable located in the outskirts of Munich,
Germany.

4. Avoiding research procedures that may be harmful to par-
ticipants. According to the veterinaries that supported us
throughout this study, attaching a sensor device and plastic
block to cows and encouraging them to walk for less than
10 minutes did not cause any lasting harm to these cows.
Veterinaries trimmed cows before attaching the plastic block
to ensure the block was placed and fit properly to the claw.
Trimming claws is a procedure undertaken to maintain a
healthy hoof condition and prevent injury and disease. In
addition, we limited the walking sessions to a maximum of
10 minutes per day and continued the data recording on a
different day in order to reduce the level of fatigue caused
to the cows.

5. Assessing research proposals and obtaining expert support.
The cow interventions performed in this study were done by
professional veterinarians and were approved by the ethics
committee of the Ludwig Maximilian University in Munich,
Germany to ensure no harm was done to the cows.

Data Collection
We recorded the motion of 10 cows while walking. Cows were
chosen to maximize the diversity of age, weight and breed.
Table 2 displays demographic information about each cow.

Cow Age
(Years)

Weight
(Kg)

Breed
(GH% / FV%)

1 5 910 31,25 / 68,75
2 5 680 68,75 / 31,25
3 5 720 43,75 / 56,25
4 7 560 87,5 / 12,5
5 6 700 31,25 / 68,75
6 4 780 62,5 / 37,5
7 3 680 0 / 100
8 5 640 100 / 0
9 4 610 0 / 100

10 3 700 0 / 100
Table 2. Information about the cows that took part in the controlled
experiment. GH = German Holstein, FV = Fleckvieh.

Figure 7. A member of our team walks behind a subject cow during the
controlled experiment.

We conducted three runs per cow. During the first run, cows
walked normally. During the other two runs, cows walked
with a plastic block attached to the outer claw of either their
left or right hind hoof. We refer to gait observations produced
by the first run as normal and to gait observations produced
by the other two runs as abnormal gait observations. Each run
lasted approximately 7 minutes.

We designed the experiment to resemble the conditions in
which our approach would be used. We let cows walk in their
usual environment rather than isolated walkways specially
designed for the experiment. Furthermore, we included motion
data of periods when cows stopped walking, turned and got
bumped by other cows. Cows walked on two different types of
ground: rubber and concrete. Figure 7 shows a cow walking
during the experiment.

Data Analysis
We measured the performance of our approach according to
the following metrics:

• Accuracy: The ability of our approach to classify gait ob-
servations correctly. It answers the question: what percent

Cow Accuracy Specificity Sensitivity
1 95,8% 96,3% 83,3%
2 94,6% 95,1% 78,6%
3 81,9% 82,0% 78,6%
4 96,4% 97,2% 66,7%
5 97,3% 97,6% 80,0%
6 81,3% 81,7% 70,6%
7 95,4% 96,6% 62,5%
8 92,6% 93,0% 77,8%
9 87,2% 87,6% 73,1%

10 88,2% 88,7% 70,6%
Table 3. Accuracy, specificity and sensitivity of our approach at detect-
ing abnormal gait observations.

of the classified gait observations (classified as normal or
abnormal) is correct? Accuracy is calculated as: number
correctly classified instances / number total instances.

• Specificity: The ability of our approach to identify normal
gait observations. It answers the question: when a cow
walks normally, what percent of its gait observations does
our approach classify as normal? This is also referred to
as true negative rate and computed as: number instances
detected as normal / number normal instances.

• Sensitivity: The ability of our approach to identify abnor-
mal gait observations. It answers the question: when a cow
walks abnormally, what percent of its gait observations does
our approach classify as abnormal? This is also referred to
as "true positive rate" and computed as: number instances
detected as abnormal / number abnormal instances.

The aforementioned measurements were computed by means
of the leave-one-out cross-validation technique. First, we
trained the SVM model with N-1 normal gait observations,
where N is the total number of normal gait observations for
a specific cow. Second, we used the model to classify the
normal gait observation that was not used to train the model
and every abnormal gait observation. We repeated this pro-
cedure N times; each time we left out a different normal gait
observation. We averaged the accuracies, specificities and
sensitivities obtained by the trained models in each repetition.

Results
Table 3 shows the accuracy, specificity and sensitivity of our
approach for each cow involved in the experiment. Parameters
used were: outlier fraction = 0.15 and lameness threshold =
�0.6. We selected these values to maximize the sensitivity
and specificity achieved by our approach for every cow based
on the data collected during the controlled experiment.

Our approach classified gait instances with an average accu-
racy of 91.1% among all the cows (specificity = 91.6% and
sensitivity = 74.2%). According to these results, our approach
classifies 8.4% of the gait observations of a cow walking nor-
mally as abnormal. In contrast, when cows do indeed walk
abnormally, our approach classifies 74.2% of their gait ob-
servations as abnormal. These results suggest our approach
detects a deviation from a cow’s usual walking pattern after
this deviation occurs.

CONCLUSION
We presented and validated a new approach to detect devia-
tion in cows’ usual gait. In contrast to other gait monitoring
approaches, our approach does not require expensive equip-
ment or a specific setup and can be used in stables as well as
outdoors. Furthermore, our approach considers the differences
in gait of each cow by comparing the walking pattern of a cow
to a baseline established for that particular cow during the first
minutes of use of our device.

The results of the controlled experiment we conducted suggest
that our approach would detect deviations from usual gait with
an accuracy of 91.1%. A system based on the approach we
propose could be used by veterinarians to gain information
about the health condition of the cows in a herd. In particular,
veterinarians might decide to examine a cow if the number of
detected lame gait observations has exceeded considerably the
usual amount for that particular cow. Our approach generates
new gait observations every 15 seconds while cows walk.

We argue that the deviation from normal gait caused by lame-
ness is more radical than the change in gait caused by the
plastic block which we used to evaluate our approach. This
is because cows suffering lameness will try to avoid pain by
bearing as little weight as possible in the affected hoof. As a
consequence, lame cows perform considerably shorter strides
or stop using one limb all together. This causes an asym-
metry in the gait, which is observable visually. In contrast,
the change caused by the plastic block is more subtle. We
were not able to assess visually whether a cow was using a
plastic block or not by looking at its gait. As a consequence,
we believe our approach might be more accurate at detecting
deviations in gait caused by lameness than those caused by
a plastic block. In the future, our approach will have to be
validated in a longer-term field study.

In this work, we did not study the power consumption rate
of our wearable device. However, a low power consumption
rate that enables the device to function for several months
is important in order to deploy our approach in a stable for
longer periods of time. We will be able to reduce the power
consumption of our wearable device considerably by different
means. First, we will study the trade-off between accuracy of
the computations and energy consumption when reducing the
sampling frequency. Second, we will select a subset of the
features we proposed in this paper. With less features, less
computations will have to be executed by the wearable device,
which will come at the cost of a loss in accuracy. Furthermore,
we will study other unsupervised machine learning algorithms
for anomaly detection that might require less computations.

ACKNOWLEDGMENTS
We would like to thank Dan Siewiorek for reviewing this paper,
Ayca Ermis for helping collect the data used in this study and
Nina Rittweg and the staff from the Lehr- und Versuchsgut
Oberschleissheim from the Ludwig Maximilian University for
supporting and guiding this project.

REFERENCES
1. Stefano Abbate, Marco Avvenuti, Francesco Bonatesta,

Guglielmo Cola, Paolo Corsini, and Alessio Vecchio.
2012. A smartphone-based fall detection system.
Pervasive and Mobile Computing 8, 6 (2012), 883–899.

2. Maher Alsaaod, Christoph Römer, Jens Kleinmanns,
Kathrin Hendriksen, Sandra Rose-Meierhöfer, Lutz
Plümer, and Wolfgang Büscher. 2012. Electronic
detection of lameness in dairy cows through measuring
pedometric activity and lying behavior. Applied Animal
Behaviour Science 142, 3 (2012), 134–141.

3. Nuria Chapinal, Anne Marie de Passille, Matti Pastell,
Laura Hänninen, Lene Munksgaard, and Jeff Rushen.
2011. Measurement of acceleration while walking as an
automated method for gait assessment in dairy cattle.
Journal of dairy science 94, 6 (2011), 2895–2901.

4. Guglielmo Cola, Marco Avvenuti, Alessio Vecchio,
Guang-Zhong Yang, and Benny Lo. 2015. An on-node
processing approach for anomaly detection in gait. IEEE
Sensors Journal 15, 11 (2015), 6640–6649.

5. R M De Mol, G André, E J B Bleumer, J T N der Werf, Y
De Haas, and C G Van Reenen. 2013. Applicability of
day-to-day variation in behavior for the automated
detection of lameness in dairy cows. Journal of dairy
science 96, 6 (2013), 3703–3712.

6. P P J der Tol, J H M Metz, E N Noordhuizen-Stassen, W
Back, C R Braam, and W A Weijs. 2002. The pressure
distribution under the bovine claw during square standing
on a flat substrate. Journal of dairy science 85, 6 (2002),
1476–1481.

7. T Van Hertem, E Maltz, A Antler, C E B Romanini, S
Viazzi, C Bahr, A Schlageter-Tello, C Lokhorst, D
Berckmans, and I Halachmi. 2013. Lameness detection
based on multivariate continuous sensing of milk yield,
rumination, and neck activity. Journal of Dairy Science
96, 7 (2013), 4286–4298.

8. Willem Maertens, Jürgen Vangeyte, Jeroen Baert,
Alexandru Jantuan, Koen C Mertens, Sam De
Campeneere, Arno Pluk, Geert Opsomer, Stephanie Van
Weyenberg, and Annelies Van Nuffel. 2011. Development
of a real time cow gait tracking and analysing tool to
assess lameness using a pressure sensitive walkway: the
GAITWISE system. Biosystems Engineering 110, 1
(2011), 29–39.

9. Clara Mancini. 2017. Towards an animal-centred ethics
for Animal–Computer Interaction. International Journal
of Human-Computer Studies 98 (2017), 221–233.

10. Hamutal Mazrier, Shlomit Tal, Eliezer Aizinbud, and Uri
Bargai. 2006. A field investigation of the use of the

pedometer for the early detection of lameness in cattle.
The Canadian Veterinary Journal 47, 9 (2006), 883.

11. Lars Relund Nielsen, Asger Roer Pedersen, Mette S
Herskin, and Lene Munksgaard. 2010. Quantifying
walking and standing behaviour of dairy cows using a
moving average based on output from an accelerometer.
Applied Animal Behaviour Science 127, 1 (2010), 12–19.

12. Matti Pastell and Minna Kujala. 2007. A Probabilistic
Neural Network Model for Lameness Detection. Journal
of Dairy Science 90, 5 (2007), 2283–2292.

13. Matti Pastell, Johannes Tiusanen, Mikko Hakojärvi, and
Laura Hänninen. 2009. A wireless accelerometer system
with wavelet analysis for assessing lameness in cattle.
Biosystems engineering 104, 4 (2009), 545–551.

14. Arno Pluk, Claudia Bahr, Ahmad Poursaberi, Willem
Maertens, Annelies Van Nuffel, and Daniel Berckmans.
2012. Automatic measurement of touch and release
angles of the fetlock joint for lameness detection in dairy
cattle using vision techniques. Journal of dairy science
95, 4 (2012), 1738–1748.

15. Ahmad Poursaberi, Claudia Bahr, Arno Pluk, Annelies
Van Nuffel, and Daniel Berckmans. 2010. Real-time
automatic lameness detection based on back posture
extraction in dairy cattle: Shape analysis of cow with
image processing techniques. Computers and Electronics
in Agriculture 74, 1 (2010), 110–119.

16. Xiangyu Song, Toon Leroy, Erik Vranken, Willem
Maertens, Bart Sonck, and Daniel Berckmans. 2008.
Automatic detection of lameness in dairy
cattle-Vision-based trackway analysis in cow’s
locomotion. Computers and electronics in agriculture 64,
1 (2008), 39–44.

17. Vivi Morkore Thorup, L Munksgaard, P-E Robert, H W
Erhard, P T Thomsen, and N C Friggens. 2015. Lameness
detection via leg-mounted accelerometers on dairy cows
on four commercial farms. animal 9, 10 (2015),
1704–1712.

18. Annelies Van Nuffel, Ingrid Zwertvaegher, Liesbet
Pluym, Stephanie Van Weyenberg, Vivi M Thorup, Matti
Pastell, Bart Sonck, and Wouter Saeys. 2015. Lameness
detection in dairy cows: Part 1. How to distinguish
between non-lame and lame cows based on differences in
locomotion or behavior. Animals 5, 3 (2015), 838–860.

19. C Yunta, I Guasch, and A Bach. 2012. Short
communication: Lying behavior of lactating dairy cows is
influenced by lameness especially around feeding time.
Journal of dairy science 95, 11 (2012), 6546–6549.

CHAPTER 6. PUBLICATIONS

6.10 A Smart Textile Sleeve for Rehabilitation of
Knee Injuries

This publication presents a first prototype of our KneeHapp system to track the
rehabilitation progress of patients after an Anterior Cruciate Ligament (ACL) injury.
This paper introduces the hardware (smart textile bandage and its electronics) and
software application and describes the different rehabilitation exercises it supports.

The author of this Habilitation elicited the requirements together with orthopedists
specialized in ACL injuries, developed the recognition algorithms to assess how well
patients execute the different rehabilitation exercises, led a team of students who
developed the user interface and wrote the paper.

Authors Haladjian, J., Scheuermann, C., Bredies, K., &
Bruegge, B.

Conference Proceedings of the 2017 ACM International
Symposium on Wearable Computers

Number of Pages 4
Type Poster paper
Review Peer Reviewed (3 Reviewers)
Year 2017
DOI https://doi.org/10.1145/3123024.3123151

140

A Smart Textile Sleeve for
Rehabilitation of Knee Injuries

Juan Haladjian
Technical University Munich
haladjia@in.tum.de

Constantin Scheuermann
Technical University Munich
constantin.scheuermann@in.tum.de

Katharina Bredies
University of Arts Berlin
katharina.bredies@udk-berlin.de

Bernd Bruegge
Technical University Munich
bruegge@in.tum.de

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UbiComp/ISWC’17 Adjunct , September 11–15, 2017, Maui, HI, USA.
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5190-4/17/09...$15.00.
https://doi.org/10.1145/3123024.3123151

Abstract
A tear of the Anterior Cruciate Ligament (ACL) is a severe
knee injury that requires up to a year of rehabilitation. Pa-
tients sustaining an ACL injury perform rehabilitation ex-
ercises mostly at home unsupervised. Orthopedists meet
patients at time intervals as long as three months and lack
quantitative ways to measure and keep track of the rehabil-
itation progress of each patient during these intervals. We
present KneeHapp, a smart bandage and sock to support
and keep track of the rehabilitation progress after an ACL
injury. KneeHapp measures the quality of different ACL re-
habilitation exercises and provides feedback to patients and
orthopedists. We describe in detail how we constructed
KneeHapp making use of smart textile technologies and
provide insight into its software and quality of its measure-
ments.

Author Keywords
KneeHapp; smart textile; e-textile; wearable; rehabilitation;
knee

ACM Classification Keywords
J.m [Computer Applications]: Miscellaneous

Introduction
Tear of Anterior Cruciate Ligament (ACL) is a severe knee
injury that occurs mostly among athletes. Currently, patients

49

UBICOMP/ISWC ’17 ADJUNCT, SEPTEMBER 11-15, 2017, MAUI, HAWAII, USA

sustaining an ACL injury perform rehabilitation exercises
mostly unsupervised and lack ways to measure the quality
and track performance of their exercising. Orthopedists also
lack tools to assess patients’ rehabilitation progress and still
rely on subjective observations to decide on the treatment.

Figure 1: Outer layer the
KneeHapp bandage.

Figure 2: Inner layer of the
KneeHapp bandage.

Different studies have investigated rehabilitation of knee
injuries using wearables and mobile devices [3, 1, 4, 5]. In
contrast, the application of smart textiles to support reha-
bilitation of knee injuries remains vastly unexplored. Fur-
thermore, most research in the field of computed-assisted
rehabilitation focuses on different injuries [1, 5, 2]. The re-
habilitation of an ACL injury has a specific set of require-
ments which derive from the fact that most patients of ACL
injuries are athletes who engage in a rehabilitation program
with the goal to return to sports.

In this paper, we introduce KneeHapp Textile, a smart ban-
dage and smart sock that support different phases of the
rehabilitation of an ACL injury including the recovery of flex-
ibility, muscle strength, and final assessment to support
orthopedists determine whether patients are ready to go
back to sports. We address the construction and integration
of textile sensors and connections and propose software
solutions to quantify ACL rehabilitation progress. Knee-
Happ can be used by patients to obtain feedback about the
quality of their exercising and by doctors to gain information
about each patient’s rehabilitation progress. KneeHapp is
intended to be used by patients at home.

Background
We conducted a series of interviews with two orthopedists
who perform ACL surgeries on a daily basis. Based on our
interviews, we identified the following problems in the cur-
rent practice:

Mobility Recovery
After a knee surgery, patients lose mobility on their knees.
Recovering a certain range of motion (RoM) is required
before patients can continue with the rehabilitation program.
During first weeks after surgery, patients need to know the
degree of flexion and extension of their knees.

Strength Recovery
After the injury and during the mobility recovery phase,
patients suffer from muscular atrophy on the injured leg.
Therefore, the second phase of the rehabilitation focuses
on muscle building. A commonly performed exercise for
strength recovery are one-leg squats and different varia-
tions of it. During a one-leg squat, patients stand on the in-
jured leg, bend it as much as they can and then go back up
into their initial position without deviating their knees from
the line between the ankles and hips.

Currently, orthopedists and physiotherapists lack conve-
nient ways to measure the angle of flexion of the leg during
a squat. Therefore, the performance metric currently being
used is the amount of squat repetitions. However, orthope-
dists agree that it would be convenient to have an objective
way to measure shaking of the leg during a squat.

Back to Sports Assessment
Towards the end of the rehabilitation, orthopedists should
assess whether patients are ready to start doing sports
again. In order to do this, orthopedists compare the perfor-
mance of the injured and healthy legs while executing dif-
ferent exercises, such as one-leg hops. One-leg hop is an
exercise in which patients should jump forward on one leg
as far as possible and land stably. Orthopedists measure
the distance of the hop by placing a meter on the ground
next to the area where the patient jumps.

50

UBICOMP/ISWC ’17 ADJUNCT, SEPTEMBER 11-15, 2017, MAUI, HAWAII, USA

KneeHapp Textile
The KneeHapp system consists of a smart compression
bandage, a smart sock and an iPad App.

Figure 3: Smart textile patches
hosting a microcontroller.

Figure 4: Smart textile patches
hosting a battery holder.

Smart Bandage
As a substrate for integration of the electronics, we initially
considered strap bands that would be fastened to the up-
per and lower leg. We decided for the compression ban-
dage for two reasons. First, patients have to wear a com-
pression bandage after the surgery for two weeks. Second,
the sensors in the bandage are placed in the same relative
distance to each other. This avoids the risk of inconsistent
measurements caused by a misplacement of the sensors,
as might be the case when users misplace the strap bands.

The KneeHapp bandage has two layers of textile. The outer
layer serves as a substrate for attachment of electronics.
Two motion sensors, two microcontrollers and a coin cell
battery holder are attached to the outer layer. The inner
layer contains an electric circuit made of elastic conductive
fiber. The inner layer also contains an integrated textile sen-
sor that measures the amount of pressure being applied at
the knee. Figures 1 and 2 show outer and inner layers of
the bandage. An additional sleeve in the inner side protects
the circuits from sweat and can be removed for washing
purposes.

Electronic devices are sewn into smart textile patches.
Smart textile patches are pieces of textile used to host an
electronic device that are connected to the circuit in the
bandage via metallic snap buttons. This enables users to
remove the electronics for replacement or washing pur-
poses. Figures 3 and 4 show a smart textile patch.

Smart Sock
The back-to-sport assessment involves mostly jump ex-
ercises. In order to gather information about the quality

Figure 5: iOS App showing the angle of flexion of the leg.

of these exercises, we integrated pressure sensitive tex-
tile material in a sock. The pressure sensitive material has
been realized by mixing conductive and non-conductive
fibers. When the fibers are squeezed, the conductive fibers
get closer together, which causes a higher conductance
of the material. Two snap buttons on the upper side of the
sock connect the sock to the bandage. The pressure signal
is processed in a microcontroller attached at the lower-leg.

51

POSTERS

KneeHapp Software
KneeHapp supports three rehabilitation phases: mobility
recovery, strength recovery and the back to sports assess-
ment.

Mobility Recovery
During the first months after the surgery, patients need to
know the range of motion of their knees. KneeHapp ag-
gregates the data from the textile pressure sensor at the
knee and orientation measured by upper and lower IMUs.
By convention, the angle of flexion of a leg should be equal
to zero when the leg is relaxed on a flat surface. In order
to account for the folding of the textile and the differences
in leg anatomy and amount of swelling, we perform an ini-
tial calibration to determine the alignment of the IMUs and
swelling of the leg.

Figure 6: One-leg hop
acceleration signal.

Figure 7: One-leg hop pressure
signal.

Strength Recovery
KneeHapp provides live feedback to patients while perform-
ing one-leg squats in three ways. First, it calculates the
angle of flexion of the leg during the squat and triggers a
visual and auditive feedback when the minimal angle of the
squat has been achieved. Second, it computes the degree
of medial collapse of a patient’s knee as the difference be-
tween the Euler angles of upper and lower IMUs. Third, it
computes the degree of shaking of the leg as the standard
deviation of the linear acceleration produced by the IMUs.

Back to Sports Assessment
KneeHapp measures and keeps track of the performance
of one-leg hops. The duration of a one-leg hop is estimated
based on data from the IMUs and pressure sensor in the
smart sock. Figure 6 displays the linear acceleration signal
produced by the upper IMU and Figure 7 displays the pres-
sure signal measured by the smart sock during a one-leg
hop.

Conclusion
In contrast to most computer-assisted solutions for rehabil-
itation, KneeHapp makes use of smart textile technology to
address robustness, user comfort, energy consumption and
modularity. The information measured by KneeHapp Textile
could be used to keep track of the motion recovery after the
surgery and to help orthopedists determine the degree of
recovery of the injured leg.

REFERENCES
1. Ayoade, M., and Baillie, L. A novel knee rehabilitation

system for the home. ACM Press (2014), 2521–2530.

2. Byrne, C. A., Rebola, C. B., and Zeagler, C. Design
research methods to understand user needs for an
etextile knee sleeve. In Proceedings of the 31st ACM
International Conference on Design of Communication,
SIGDOC ’13, ACM (New York, NY, USA, 2013), 17–22.

3. Haladjian, J., Hodaie, Z., Xu, H., Yigin, M., Bruegge, B.,
Fink, M., and Hoeher, J. Kneehapp: a bandage for
rehabilitation of knee injuries. In Adjunct Proceedings of
the 2015 ACM International Symposium on Wearable
Computers, ACM (2015), 181–184.

4. Huang, K., Sparto, P. J., Kiesler, S., Smailagic, A.,
Mankoff, J., and Siewiorek, D. A technology probe of
wearable in-home computer-assisted physical therapy. In
Proceedings of the 32Nd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’14, ACM
(New York, NY, USA, 2014), 2541–2550.

5. Taylor, P., Almeida, G., Kanade, T., and Hodgins, J.
Classifying human motion quality for knee osteoarthritis
using accelerometers. In 2010 Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC) (Aug. 2010), 339–343.

52

UBICOMP/ISWC ’17 ADJUNCT, SEPTEMBER 11-15, 2017, MAUI, HAWAII, USA

Bibliography

[1] S. Abbate, M. Avvenuti, F. Bonatesta, G. Cola, P. Corsini, and A. Vecchio.
A smartphone-based fall detection system. Pervasive and Mobile Computing,
8(6):883–899, 2012.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles. To-
wards a better understanding of context and context-awareness. In International
symposium on handheld and ubiquitous computing, pages 304–307. Springer,
1999.

[3] A. Akl and S. Valaee. Accelerometer-based gesture recognition via dynamic-time
warping, affinity propagation, compressive sensing. In 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 2270–2273, mar
2010.

[4] K. Altun and B. Barshan. Human Activity Recognition Using Inertial/Magnetic
Sensor Units. In A. A. Salah, T. Gevers, N. Sebe, and A. Vinciarelli, editors, Hu-
man Behavior Understanding, pages 38–51, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[5] O. Amft. A wearable earpad sensor for chewing monitoring. In SENSORS, 2010
IEEE, pages 222–227. IEEE, 2010.

[6] O. Amft, H. Junker, P. Lukowicz, G. Troster, and C. Schuster. Sensing muscle
activities with body-worn sensors. In Wearable and Implantable Body Sensor
Networks, 2006. BSN 2006. International Workshop on, pages 4 pp.–141, apr
2006.

[7] O. Amft, M. Kusserow, and G. Tröster. Probabilistic parsing of dietary activity
events. In 4th International Workshop on Wearable and Implantable Body Sensor
Networks (BSN 2007), pages 242–247. Springer, 2007.

[8] C. Amma, M. Georgi, and T. Schultz. Airwriting: a wearable handwriting
recognition system. Personal and ubiquitous computing, 18(1):191–203, 2014.

[9] D. Ashbrook and T. Starner. MAGIC: a motion gesture design tool. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 2159–2168. ACM, 2010.

145

BIBLIOGRAPHY

[10] L. Atallah, B. Lo, R. King, and G.-Z. Yang. Sensor positioning for activity
recognition using wearable accelerometers. IEEE transactions on biomedical
circuits and systems, 5(4):320–329, 2011.

[11] M. Ayoade and L. Baillie. A Novel Knee Rehabilitation System for the Home.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’14, pages 2521–2530, New York, NY, USA, 2014. ACM.

[12] M. Bächlin, K. Förster, and G. Tröster. SwimMaster: a wearable assistant for
swimmer. In Proceedings of the 11th international conference on Ubiquitous
computing, pages 215–224. ACM, 2009.

[13] D. Bannach, O. Amft, and P. Lukowicz. Rapid Prototyping of Activity Recog-
nition Applications. IEEE Pervasive Computing, 7(2):22–31, apr 2008.

[14] L. Bao and S. S. Intille. Activity recognition from user-annotated acceleration
data. In International conference on pervasive computing, pages 1–17. Springer,
2004.

[15] J. Barth, C. Oberndorfer, C. Pasluosta, S. Schülein, H. Gassner, S. Reinfelder,
P. Kugler, D. Schuldhaus, J. Winkler, J. Klucken, and Others. Stride segmenta-
tion during free walk movements using multi-dimensional subsequence dynamic
time warping on inertial sensor data. Sensors, 15(3):6419–6440, 2015.

[16] A. Belaid and J. Haton. A Syntactic Approach for Handwritten Mathematical
Formula Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-6(1):105–111, jan 1984.

[17] N. B. Bharatula, M. Stäger, P. Lukowicz, and G. Tröster. Empirical study
of design choices in multi-sensor context recognition systems. In IFAWC: 2nd
international forum on applied wearable computing, pages 79–93, 2005.

[18] P. Blank, J. Hoßbach, D. Schuldhaus, and B. M. Eskofier. Sensor-based stroke
detection and stroke type classification in table tennis. In Proceedings of the
2015 ACM International Symposium on Wearable Computers, pages 93–100.
ACM, 2015.

[19] A. Bulling, U. Blanke, and B. Schiele. A tutorial on human activity recognition
using body-worn inertial sensors. ACM Computing Surveys (CSUR), 46(3):33,
2014.

[20] A. Bulling, J. A. Ward, H. Gellersen, and G. Troster. Eye movement analysis
for activity recognition using electrooculography. IEEE transactions on pattern
analysis and machine intelligence, 33(4):741–753, 2010.

[21] J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy. Wearable sensors for
reliable fall detection. In 2005 IEEE Engineering in Medicine and Biology 27th
Annual Conference, pages 3551–3554. IEEE, 2006.

146

BIBLIOGRAPHY

[22] P.-Y. P. Chi and Y. Li. Weave: Scripting cross-device wearable interaction. In
Proceedings of the 33rd annual ACM conference on human factors in computing
systems, pages 3923–3932. ACM, 2015.

[23] H. Cho and S. Yoon. Divide and conquer-based 1D CNN human activity recog-
nition using test data sharpening. Sensors, 18(4):1055, 2018.

[24] G. Cola, M. Avvenuti, A. Vecchio, G.-Z. Yang, and B. Lo. An on-node processing
approach for anomaly detection in gait. IEEE Sensors Journal, 15(11):6640–
6649, 2015.

[25] F. Dadashi, A. Arami, F. Crettenand, G. P. Millet, J. Komar, L. Seifert, and
K. Aminian. A hidden markov model of the breaststroke swimming temporal
phases using wearable inertial measurement units. In 2013 IEEE international
conference on body sensor networks, pages 1–6. Ieee, 2013.

[26] A. K. Dey. Context-aware computing: The CyberDesk project. In Proceedings
of the AAAI 1998 Spring Symposium on Intelligent Environments, pages 51–54,
1998.

[27] J. Echterhoff, J. Haladjian, and B. Brügge. Gait Analysis in Horse Sports. In
Proceedings of the Fifth International Conference on Animal-Computer Inter-
action, page 3. ACM, 2018.

[28] J. Echterhoff, J. Haladjian, and B. Brügge. Gait and Jump Classification in
Modern Equestrian Sports. In Proceedings of the 2018 ACM International Sym-
posium on Wearable Computers, pages 88–91. ACM, 2018.

[29] M. Ermes, J. PÄrkkÄ, J. MÄntyjÄrvi, and I. Korhonen. Detection of Daily
Activities and Sports With Wearable Sensors in Controlled and Uncontrolled
Conditions. IEEE Transactions on Information Technology in Biomedicine,
12(1):20–26, jan 2008.

[30] G. W. Fitzmaurice. Situated information spaces and spatially aware palmtop
computers. Communications of the ACM, 36(7):38–50, 1993.

[31] N. Gillian and J. A. Paradiso. The gesture recognition toolkit. The Journal of
Machine Learning Research, 15(1):3483–3487, 2014.

[32] B. H. Groh, M. Fleckenstein, T. Kautz, and B. M. Eskofier. Classification and
visualization of skateboard tricks using wearable sensors. Pervasive and Mobile
Computing, 40:42–55, 2017.

[33] B. H. Groh, F. Warschun, M. Deininger, T. Kautz, C. Martindale, and B. M.
Eskofier. Automated Ski Velocity and Jump Length Determination in Ski Jump-
ing Based on Unobtrusive and Wearable Sensors. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3):53, 2017.

147

BIBLIOGRAPHY

[34] T. Grosse-Puppendahl, Y. Berghoefer, A. Braun, R. Wimmer, and A. Kuijper.
OpenCapSense: A rapid prototyping toolkit for pervasive interaction using ca-
pacitive sensing. In 2013 IEEE International Conference on Pervasive Comput-
ing and Communications (PerCom), pages 152–159. IEEE, 2013.

[35] S. Ha and S. Choi. Convolutional neural networks for human activity recognition
using multiple accelerometer and gyroscope sensors. In 2016 International Joint
Conference on Neural Networks (IJCNN), pages 381–388. IEEE, 2016.

[36] J. Haladjian. The Wearables Development Toolkit: An Integrated Development
Environment for Activity Recognition Applications. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol, 3(3):submitted, 2019.

[37] J. Haladjian, K. Bredies, and B. Bruegge. Interactex: An integrated develop-
ment environment for smart textiles. In Proceedings of the 2016 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing and Proceed-
ings of the 2016 ACM International Symposium on Wearable Computers, pages
8–15. ACM, 2016.

[38] J. Haladjian, K. Bredies, and B. Bruegge. KneeHapp Textile: A Smart Textile
System for Rehabilitation of Knee Injuries. In Proceedings of the 15th Interna-
tional Conference on Wearable and Implantable Body Sensor Networks (BSN),
pages 9–12. IEEE, 2018.

[39] J. Haladjian and B. Bruegge. Teaching wearable device development with the
wearables development toolkit. CEUR Workshop Proceedings, 2308:27–28, 2019.

[40] J. Haladjian, B. Brügge, and S. Nüske. An Approach for Early Lameness De-
tection in Dairy Cattle. In Proceedings of the 2017 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017
ACM International Symposium on Wearable Computers, pages 53–56. ACM,
2017.

[41] J. Haladjian, A. Ermis, B. Brügge, W. Plötz, and P. Buschner. Supporting
rehabilitation after hip replacement with a mobile device carried in a pocket. In
Proceedings of the 2017 ACM International Joint Conference on Pervasive and
Ubiquitous Computing and Proceedings of the 2017 ACM International Sympo-
sium on Wearable Computers, pages 452–457. ACM, 2017.

[42] J. Haladjian, A. Ermis, Z. Hodaie, and B. Brügge. iPig: Towards Tracking
the Behavior of Free-roaming Pigs. In Proceedings of the Fourth International
Conference on Animal-Computer Interaction, ACI2017, pages 10:1—-10:5, New
York, NY, USA, 2017. ACM.

[43] J. Haladjian, J. Haug, S. Nüske, and B. Bruegge. A Wearable Sensor System for
Lameness Detection in Dairy Cattle. Multimodal Technologies and Interaction,
2(2):27, 2018.

148

BIBLIOGRAPHY

[44] J. Haladjian, Z. Hodaie, S. Nüske, and B. Brügge. Gait Anomaly Detection in
Dairy Cattle. In Proceedings of the Fourth International Conference on Animal-
Computer Interaction, ACI2017, pages 8:1—-8:8, New York, NY, USA, 2017.
ACM.

[45] J. Haladjian, Z. Hodaie, H. Xu, M. Yigin, B. Bruegge, M. Fink, and J. Hoeher.
KneeHapp: A Bandage for Rehabilitation of Knee Injuries. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting and Proceedings of the 2015 ACM International Symposium on Wearable
Computers, pages 181–184. ACM, 2015.

[46] J. Haladjian, S. Nüske, and B. Brüge. iCow – A new approach for lameness
detection. In Proceedings of 19th International Symposium and 11th Conference
Lameness in Ruminants, pages 236–237, 2017.

[47] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The WEKA data mining software: an update. ACM SIGKDD explorations
newsletter, 11(1):10–18, 2009.

[48] N. Y. Hammerla, S. Halloran, and T. Plötz. Deep, Convolutional, and Recur-
rent Models for Human Activity Recognition Using Wearables. In Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI’16, pages 1533–1540. AAAI Press, 2016.

[49] B. Hartmann, L. Abdulla, M. Mittal, and S. R. Klemmer. Authoring sensor-
based interactions by demonstration with direct manipulation and pattern
recognition. Proceedings of the SIGCHI conference on Human factors in com-
puting systems (CHI ’07), pages 145–154, 2007.

[50] S. Houben, C. Golsteijn, S. Gallacher, R. Johnson, S. Bakker, N. Marquardt,
L. Capra, and Y. Rogers. Physikit: Data engagement through physical ambi-
ent visualizations in the home. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems, pages 1608–1619. ACM, 2016.

[51] S. Houben and N. Marquardt. Watchconnect: A toolkit for prototyping
smartwatch-centric cross-device applications. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, pages 1247–1256.
ACM, 2015.

[52] Y. A. Ivanov and A. F. Bobick. Recognition of visual activities and interac-
tions by stochastic parsing. IEEE Transactions on Pattern Analysis & Machine
Intelligence, (8):852–872, 2000.

[53] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern recognition: A review.
IEEE Transactions on pattern analysis and machine intelligence, 22(1):4–37,
2000.

[54] R. Jia and B. Liu. Human daily activity recognition by fusing accelerometer
and multi-lead ECG data. In 2013 IEEE International Conference on Signal

149

BIBLIOGRAPHY

Processing, Communication and Computing (ICSPCC 2013), pages 1–4. IEEE,
2013.

[55] A. Khan, J. Nicholson, and T. Plötz. Activity Recognition for Quality Assess-
ment of Batting Shots in Cricket using a Hierarchical Representation. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
1(3):62, 2017.

[56] C. Ladha, N. Hammerla, E. Hughes, P. Olivier, and T. Ploetz. Dog’s life: wear-
able activity recognition for dogs. In Proceedings of the 2013 ACM international
joint conference on Pervasive and ubiquitous computing, pages 415–418. ACM,
2013.

[57] D. Ledo, F. Anderson, R. Schmidt, L. Oehlberg, S. Greenberg, and T. Gross-
man. Pineal: Bringing Passive Objects to Life with Embedded Mobile Devices.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, pages 2583–2593. ACM, 2017.

[58] D. Ledo, S. Houben, J. Vermeulen, N. Marquardt, L. Oehlberg, and S. Green-
berg. Evaluation strategies for HCI toolkit research. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, page 36. ACM, 2018.

[59] F. Li, K. Shirahama, M. Nisar, L. Köping, and M. Grzegorzek. Comparison of
feature learning methods for human activity recognition using wearable sensors.
Sensors, 18(2):679, 2018.

[60] Z. Li, Z. Wei, Y. Yue, H. Wang, W. Jia, L. E. Burke, T. Baranowski, and
M. Sun. An adaptive hidden markov model for activity recognition based on a
wearable multi-sensor device. Journal of medical systems, 39(5):57, 2015.

[61] P. Lukowicz, J. A. Ward, H. Junker, M. Stäger, G. Tröster, A. Atrash, and
T. Starner. Recognizing workshop activity using body worn microphones and
accelerometers. In International conference on pervasive computing, pages 18–
32. Springer, 2004.

[62] K. Lyons, H. Brashear, T. Westeyn, J. S. Kim, and T. Starner. Gart: The
gesture and activity recognition toolkit. In International Conference on Human-
Computer Interaction, pages 718–727. Springer, 2007.

[63] B. Mariani, M. C. Jiménez, F. J. G. Vingerhoets, and K. Aminian. On-shoe
wearable sensors for gait and turning assessment of patients with Parkinson’s
disease. IEEE transactions on biomedical engineering, 60(1):155–158, 2013.

[64] C. F. Martindale, M. Strauss, H. Gaßner, J. List, M. Müller, J. Klucken, Z. Kohl,
and B. M. Eskofier. Segmentation of gait sequences using inertial sensor data in
hereditary spastic paraplegia. In 2017 39th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), pages 1266–
1269, jul 2017.

150

BIBLIOGRAPHY

[65] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher. Activity recognition
and monitoring using multiple sensors on different body positions. Technical
report, CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COM-
PUTER SCIENCE, 2006.

[66] J. Meyer, P. Lukowicz, and G. Tröster. Textile pressure sensor for muscle activity
and motion detection. In Wearable Computers, 2006 10th IEEE International
Symposium on, pages 69–72. IEEE, 2006.

[67] A. Millner and E. Baafi. Modkit: blending and extending approachable plat-
forms for creating computer programs and interactive objects. In Proceedings
of the 10th International Conference on Interaction Design and Children, pages
250–253. ACM, 2011.

[68] M. Moreau, S. Siebert, A. Buerkert, and E. Schlecht. Use of a tri-axial accelerom-
eter for automated recording and classification of goats’ grazing behaviour. Ap-
plied Animal Behaviour Science, 119(3-4):158–170, 2009.

[69] J. Muhlsteff, O. Such, R. Schmidt, M. Perkuhn, H. Reiter, J. Lauter, J. Thijs,
G. Musch, and M. Harris. Wearable approach for continuous ECG-and activity
patient-monitoring. In The 26th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, volume 1, pages 2184–2187. IEEE,
2004.

[70] M. Nebeling, T. Mintsi, M. Husmann, and M. Norrie. Interactive development
of cross-device user interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 2793–2802. ACM, 2014.

[71] V. P. Nguyen, S. H. Yoon, A. Verma, and K. Ramani. BendID: Flexible Interface
for Localized Deformation Recognition. In Proceedings of the 2014 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
’14, pages 553–557, New York, NY, USA, 2014. ACM.

[72] F. Ordóñez and D. Roggen. Deep convolutional and lstm recurrent neural net-
works for multimodal wearable activity recognition. Sensors, 16(1):115, 2016.

[73] S. Patel, D. Sherrill, R. Hughes, T. Hester, T. Lie-Nemeth, P. Bonato, D. Stan-
daert, and N. Huggins. Analysis of the Severity of Dyskinesia in Patients with
Parkinson’s Disease via Wearable Sensors. In International Workshop on Wear-
able and Implantable Body Sensor Networks (BSN’06), pages 123–126. IEEE,
2006.

[74] R. L. Peiris and S. Nanayakkara. PaperPixels: a toolkit to create paper-based
displays. In Proceedings of the 26th Australian Computer-Human Interaction
Conference on Designing Futures: the Future of Design, pages 498–504. ACM,
2014.

[75] L. Peng, L. Chen, Z. Ye, and Y. Zhang. AROMA: A Deep Multi-Task Learn-
ing Based Simple and Complex Human Activity Recognition Method Using

151

BIBLIOGRAPHY

Wearable Sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
2(2):74:1—-74:16, jul 2018.

[76] M. Pfeiffer, T. Duente, and M. Rohs. Let your body move: a prototyping toolkit
for wearable force feedback with electrical muscle stimulation. In Proceedings of
the 18th International Conference on Human-Computer Interaction with Mobile
Devices and Services, pages 418–427. ACM, 2016.

[77] S. Pirttikangas, K. Fujinami, and T. Nakajima. Feature selection and activity
recognition from wearable sensors. In International symposium on ubiquitious
computing systems, pages 516–527. Springer, 2006.

[78] T. Plötz, N. Y. Hammerla, A. Rozga, A. Reavis, N. Call, and G. D. Abowd.
Automatic assessment of problem behavior in individuals with developmental
disabilities. In Proceedings of the 2012 ACM conference on ubiquitous computing,
pages 391–400. ACM, 2012.

[79] R. Ramakers, F. Anderson, T. Grossman, and G. Fitzmaurice. Retrofab: A
design tool for retrofitting physical interfaces using actuators, sensors and 3d
printing. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, pages 409–419. ACM, 2016.

[80] R. Ramakers, K. Todi, and K. Luyten. PaperPulse: An Integrated Approach
for Embedding Electronics in Paper Designs. Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems - CHI ’15, pages
2457–2466, 2015.

[81] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman. Activity recognition from
accelerometer data. In Aaai, volume 5, pages 1541–1546, 2005.

[82] J.-L. Reyes-Ortiz, L. Oneto, A. Samà, X. Parra, and D. Anguita. Transition-
aware human activity recognition using smartphones. Neurocomputing, 171:754–
767, 2016.

[83] N. S. Ryan, J. Pascoe, and D. R. Morse. Enhanced reality fieldwork: the context-
aware archaeological assistant. In Computer applications in archaeology. Tempus
Reparatum, 1998.

[84] V. Savage, C. Chang, and B. Hartmann. Sauron: embedded single-camera
sensing of printed physical user interfaces. In Proceedings of the 26th annual
ACM symposium on User interface software and technology, pages 447–456.
ACM, 2013.

[85] V. Savage, S. Follmer, J. Li, and B. Hartmann. Makers’ Marks: Physical markup
for designing and fabricating functional objects. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology, pages 103–
108. ACM, 2015.

[86] G. Schiboni and O. Amft. Automatic dietary monitoring using wearable acces-
sories. In Seamless Healthcare Monitoring, pages 369–412. Springer, 2018.

152

BIBLIOGRAPHY

[87] G. Schiboni and O. Amft. Sparse natural gesture spotting in free living to
monitor drinking with wrist-worn inertial sensors. In Proceedings of the 2018
ACM International Symposium on Wearable Computers, pages 140–147. ACM,
2018.

[88] B. N. Schilit and M. M. Theimer. Disseminating Active Mop Infonncition to
Mobile Hosts. IEEE network, 1994.

[89] D. Schuldhaus, C. Zwick, H. Koerger, E. Dorschky, R. Kirk, and B. M. Eskofier.
Inertial sensor-based approach for shot/pass classification during a soccer match.
In KDD Workshop on Large-Scale Sports Analytics 2015, pages 1–4, 2015.

[90] T. Seyed, A. Azazi, E. Chan, Y. Wang, and F. Maurer. Sod-toolkit: A toolkit
for interactively prototyping and developing multi-sensor, multi-device environ-
ments. In Proceedings of the 2015 International Conference on Interactive Table-
tops & Surfaces, pages 171–180. ACM, 2015.

[91] D. Siewiorek, A. Smailagic, and A. Dey. Architecture and Applications of Vir-
tual Coaches. Proceedings of the IEEE, 100(8):2472–2488, 2012.

[92] R. E. Stake. Standards-based and responsive evaluation. Sage, 2004.

[93] Z. Sun, X. Mao, W. Tian, and X. Zhang. Activity classification and dead
reckoning for pedestrian navigation with wearable sensors. Measurement science
and technology, 20(1):15203, 2008.

[94] M. Sundholm, J. Cheng, B. Zhou, A. Sethi, and P. Lukowicz. Smart-mat: Rec-
ognizing and Counting Gym Exercises with Low-cost Resistive Pressure Sensing
Matrix. In Proceedings of the 2014 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing, UbiComp ’14, pages 373–382, New York, NY,
USA, 2014. ACM.

[95] E. M. Tapia, S. S. Intille, and K. Larson. Activity recognition in the home
using simple and ubiquitous sensors. In International conference on pervasive
computing, pages 158–175. Springer, 2004.

[96] R. Thompson, I. Kyriazakis, A. Holden, P. Olivier, and T. Plötz. Dancing
with horses: automated quality feedback for dressage riders. In Proceedings
of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, pages 325–336. ACM, 2015.

[97] P. Trahanias and E. Skordalakis. Syntactic pattern recognition of the ECG.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):648–
657, 1990.

[98] G. Valentin, J. Alcaidinho, A. Howard, M. M. Jackson, and T. Starner. Cre-
ating Collar-sensed Motion Gestures for Dog-human Communication in Service
Applications. In Proceedings of the 2016 ACM International Symposium on
Wearable Computers, ISWC ’16, pages 100–107, New York, NY, USA, 2016.
ACM.

153

BIBLIOGRAPHY

[99] R. Varatharajan, G. Manogaran, M. K. Priyan, and R. Sundarasekar. Wear-
able sensor devices for early detection of Alzheimer disease using dynamic time
warping algorithm. Cluster Computing, pages 1–10, 2017.

[100] R. Varatharajan, G. Manogaran, M. K. Priyan, and R. Sundarasekar. Wear-
able sensor devices for early detection of Alzheimer disease using dynamic time
warping algorithm. Cluster Computing, 21(1):681–690, mar 2018.

[101] R. Walters, J. C. Principe, and S. . Park. Spike detection using a syntactic
pattern recognition approach. In Images of the Twenty-First Century. Proceed-
ings of the Annual International Engineering in Medicine and Biology Society,,
pages 1810–1811 vol.6, nov 1989.

[102] E. Walton, C. Casey, J. Mitsch, J. A. Vázquez-Diosdado, J. Yan, T. Dottorini,
K. A. Ellis, A. Winterlich, and J. Kaler. Evaluation of sampling frequency,
window size and sensor position for classification of sheep behaviour. Royal
Society open science, 5(2):171442, 2018.

[103] Z. Wang, M. Jiang, Y. Hu, and H. Li. An Incremental Learning Method Based
on Probabilistic Neural Networks and Adjustable Fuzzy Clustering for Human
Activity Recognition by Using Wearable Sensors. IEEE Transactions on Infor-
mation Technology in Biomedicine, 16(4):691–699, jul 2012.

[104] J. A. Ward, P. Lukowicz, G. Troster, and T. E. Starner. Activity recognition of
assembly tasks using body-worn microphones and accelerometers. IEEE trans-
actions on pattern analysis and machine intelligence, 28(10):1553–1567, 2006.

[105] T. Westeyn, H. Brashear, A. Atrash, and T. Starner. Georgia tech gesture
toolkit: supporting experiments in gesture recognition. In Proceedings of the 5th
international conference on Multimodal interfaces, pages 85–92. ACM, 2003.

[106] C.-J. Wu, S. Houben, and N. Marquardt. Eaglesense: Tracking people and de-
vices in interactive spaces using real-time top-view depth-sensing. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems, pages
3929–3942. ACM, 2017.

[107] R. Xiao, C. Harrison, and S. E. Hudson. WorldKit: rapid and easy creation
of ad-hoc interactive applications on everyday surfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 879–888.
ACM, 2013.

[108] J. Yang and D. Wigdor. Panelrama: enabling easy specification of cross-device
web applications. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 2783–2792. ACM, 2014.

[109] K. Yatani and K. N. Truong. BodyScope: a wearable acoustic sensor for ac-
tivity recognition. In Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, pages 341–350. ACM, 2012.

154

BIBLIOGRAPHY

[110] M. Zeng, H. Gao, T. Yu, O. J. Mengshoel, H. Langseth, I. Lane, and X. Liu.
Understanding and improving recurrent networks for human activity recogni-
tion by continuous attention. In Proceedings of the 2018 ACM International
Symposium on Wearable Computers, pages 56–63. ACM, 2018.

[111] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, and J. Zhang.
Convolutional neural networks for human activity recognition using mobile sen-
sors. In 6th International Conference on Mobile Computing, Applications and
Services, pages 197–205. IEEE, 2014.

[112] B. Zhou, H. Koerger, M. Wirth, C. Zwick, C. Martindale, H. Cruz, B. Eskofier,
and P. Lukowicz. Smart soccer shoe: monitoring foot-ball interaction with
shoe integrated textile pressure sensor matrix. In Proceedings of the 2016 ACM
International Symposium on Wearable Computers, pages 64–71. ACM, 2016.

155

	Introduction
	Research Process
	Outline

	Background
	Activity Recognition
	The Activity Recognition Chain
	 Classification Methods
	Architectures
	 Development Lifecycle

	Related Work

	The Wearables Development Toolkit
	Design Goals
	Architecture of the WDK
	WDK Repository
	WDK Runtime Components
	WDK Development Components

	WDK Tools
	Data Annotation Tool
	Data Analysis Tool
	Algorithm Development Tool
	Algorithm Assessment Tool

	Evaluation
	Step-by-step Walkthrough: Goalie Glove
	Data Collection and Annotation
	Data Analysis
	Algorithm Implementation
	Performance Assessment

	Reference Applications
	Reference Application 1: Daily Activity Monitoring
	Reference Application 2: HipRApp

	Conclusions and Future Work
	Publications
	The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition Applications
	Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises
	Teaching wearable device development with the wearables development toolkit
	Gait Analysis in Horse Sports
	Gait and Jump Classification in Modern Equestrian Sports
	A Wearable Sensor System for Lameness Detection in Dairy Cattle
	KneeHapp Textile: A Smart Textile System for Rehabilitation of Knee Injuries
	iPig: Towards Tracking the Behavior of Free-roaming Pigs
	Gait Anomaly Detection in Dairy Cattle
	A Smart Textile Sleeve for Rehabilitation of Knee Injuries

	Bibliography

